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Free Boolean algebras



Boolean algebras form a variety (equational class) BA which provides the
algebraic semantics of the classical propositional calculus (CPC).

Terms in the language of Boolean algebras correspond to formulas in the
language of CPC.

Theorem (Algebraic completeness of CPC)
Let t be a term corresponding to a formula φ. Then

BA ⊨ t = 1 iff CPC ⊢ φ.

The right to left implication is a straightforward verification. What about
the other implication?
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Let X be a set of propositional variables and consider the set Form(X ) of
formulas over the variables in X .

Define ∼ on Form(X ) by

φ ∼ ψ iff CPC ⊢ φ ↔ ψ.

The Lindenbaum-Tarski algebra for CPC over X is Form(X )/∼.

[φ] ∧ [ψ] = [φ ∧ ψ] [φ] ∨ [ψ] = [φ ∨ ψ] ¬[φ] = [¬φ]

1 = [⊤] 0 = [⊥]

Proposition
Form(X )/∼ is a Boolean algebra.

Note that [φ] ≤ [ψ] iff CPC ⊢ φ → ψ.
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The algebraic completeness of CPC is then a consequence of the following
lemma.

Lemma
If t(x1, . . . , xn) is a term corresponding to a formula φ(p1, . . . , pn) over X,
then

Form(X )/∼ ⊨ t = 1 implies CPC ⊢ φ.

Proof (sketch): We have t([p1], . . . , [pn]) = [φ(p1, . . . , pn)], and hence
[φ(p1, . . . , pn)] = 1. Therefore,

CPC ⊢ φ ↔ ⊤,

which yields CPC ⊢ φ.
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Let V be a variety and X a set. An algebra F ∈ V is said to be free over X
if there exists a function f : X → F such that for any A ∈ V and function
g : X → A, there is a unique homomorphism h : F → A with g = h ◦ f .

F A

X

∃! h

f g

Free algebras over a given set are unique up to isomorphism, so we will
talk about the free V-algebra over X and denote it by FV(X ).

If |X | = |Y |, then FV(X ) ∼= FV(Y ). So, we will often write FV(|X |)
instead of FV(X ).

Theorem
The Lindenbaum-Tarski algebra Form(X )/∼ is the Boolean algebra free
over X.
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FBA(1)

⊤

⊥

¬pp
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FBA(2)

⊥

p ∧ q ¬p ∧ q

q p XOR q

p ∧ ¬q

p

p ∨ q

¬p ∧ ¬q

p ↔ q ¬p

¬p ∨ q ¬p ∨ ¬q

¬q

p ∨ ¬q

⊤
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What about FBA(3), FBA(4), . . . ?

When n ∈ ω, then FBA(n) is finite; i.e., BA is a locally finite variety.

Indeed, every formula is equivalent to one in disjunctive normal form: a
disjunction of formulas of the form

(¬)p1 ∧ (¬)p2 ∧ · · · ∧ (¬)pn.

Recall that an atom of a Boolean algebra B is a minimal nonzero element
of B.

Thus, FBA(n) has exactly 2n atoms, which are the equivalence classes of
the formulas of the form above.
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⊤

⊥

¬pp

The atoms of FBA(1) correspond to the possible situations that can be
described with one proposition p: either p holds or it doesn’t.
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⊥

p ∧ q ¬p ∧ q

q p XOR q

p ∧ ¬q

p

p ∨ q

¬p ∧ ¬q

p ↔ q ¬p

¬p ∨ q ¬p ∨ ¬q

¬q

p ∨ ¬q

⊤

The atoms of FBA(2) correspond to the possible situations that can be
described with 2 independent propositions p and q.
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Every finite Boolean algebra is isomorphic to the powerset of the set of its
atoms.

Theorem
FBA(n) is isomorphic to P(2n), and so it has 22n elements.

p

¬p

n = 1

p q

p ∧ ¬q ¬p ∧ qp ∧ q

¬p ∧ ¬q

n = 2
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Free Boolean algebras via Stone duality



What about FBA(κ) for an infinite cardinal κ? Then FBA(κ) is infinite: it
has cardinality κ.

Proposition
FBA(κ) doesn’t have atoms for every infinite κ.

Proof (sketch): suppose that [φ] ∈ FBA(κ) is an atom. Consider a
propositional letter p that doesn’t appear in φ. Then 0 ̸= [φ ∧ p] < [φ].

We will replace atoms with ultrafilters.
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A filter F of a Boolean algebra B is a subset F ⊆ B such that:
1 ∈ F ,
a ∈ F and a ≤ b imply b ∈ F ,
a, b ∈ F implies a ∧ b ∈ F .

A proper filter F is called an ultrafilter if the following equivalent
conditions hold:

F is a maximal proper filter of B,
a ∈ F or ¬a ∈ F for every a ∈ B,
a ∨ b ∈ F implies a ∈ F or b ∈ F .
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Atoms are not suitable to deal with infinite Boolean algebras. We’ll work
with ultrafilters instead.

If a ∈ B is an atom, then ↑a := {b : a ≤ b} is an ultrafilter. Every
principal ultrafilter is of that form.
If B is finite, then every ultrafilter of B is principal.
When B is infinite, there exist nonprincipal ultrafilters.
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A theory T (i.e., set of propositional formulas) is deductively closed if
T ⊢CPC φ, then φ ∈ T .
T is called complete if it is consistent and T ⊢CPC φ or T ⊢CPC ¬φ for
every φ.
Filters of FBA(κ) correspond to deductively closed theories in κ variables.
Ultrafilters of FBA(κ) correspond to complete deductively closed theories.

0

p ∧ q ¬p ∧ q

q p XOR q

p ∧ ¬q

p

p ∨ q

¬p ∧ ¬q

p ↔ q ¬p

¬p ∨ q ¬p ∨ ¬q

¬q

p ∨ ¬q

1
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Ultrafilters of a free Boolean algebra can then be thought of as possible
worlds: a world is completely described by the collection of formulas that
are true in that world.

The larger κ is, the more propositions you have to differentiate between
possible worlds.

This is a bridge between syntax and semantics that will lead us to Stone
duality.

Can we get a similar intuition about ultrafilters of an arbitrary Boolean
algebra?
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Let B be a Boolean algebra. Then there exists an onto homomorphism
FBA(κ) → B for some cardinal κ.

It follows that B ∼= FBA(κ)/F for a filter F of FBA(κ).

Let T be the theory corresponding to F . Then B can be thought of as a
Lindenbaum-Tarski algebra modulo T . More precisely, B is isomorphic to
the Boolean algebra Form(κ)/∼, where

φ ∼ ψ iff T ⊢CPC φ ↔ ψ

and the operations are defined as in the Lindenbaum-Tarski algebras.

Since B ∼= FBA(κ)/F , ultrafilters of B correspond to ultrafilters of FBA(κ)
containing F .

So, ultrafilters of B can be thought of as the complete theories extending
T . Thus, they correspond to the possible worlds in which T is true; i.e.,
the models of T .
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The set Ult(B) of ultrafilters of B is naturally equipped with a topology.

Intuition: a world x is “close” to a set of worlds S if every formula true in
x is also true in some world in S.

Let B be a Boolean algebra. We equip the set Ult(B) of ultrafilters of B
with the topology generated by the basis {σ(a) : a ∈ B}, where

σ(a) := {F ∈ Ult(B) : a ∈ F}.

Syntax → semantics: points of Ult(B) are possible worlds and the
elements of B are formulas. Then σ(a) is the set of worlds in which the
formula a holds.
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Then Ult(B) is a topological space that is:
Hausdorff,
compact,
zero-dimensional: the clopen (closed and open) subsets form a basis.

The topological spaces satisfying these three properties are called Stone
(or Boolean) spaces.

Let X be a Stone space and Clop(X ) the collection of its clopen subsets.
Then (Clop(X ),∩,∪,−,∅,X ) is a Boolean algebra.

Semantics → syntax: points of X are possible worlds and the elements of
Clop(X ) are formulas. Each clopen V is the collection of worlds in which
it is “true”.
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Let BA be the category of Boolean algebras and Boolean
homomorphisms.
Let Stone be the category of Stone spaces and continuous functions.

We obtain contravariant functors Ult : BA → Stone and
Clop: Stone → BA by setting:

If h : A → B, then Ult(h) := h−1 : Ult(B) → Ult(A).
If f : X → Y , then Clop(f ) := f −1 : Clop(Y ) → Clop(X ).

Theorem (Stone duality)
Ult and Clop establish a dual equivalence between BA and Stone.

In particular,
B ∼= Clop(Ult(B)) for every B ∈ BA,
X ∼= Ult(Clop(X )) for every X ∈ Stone,

and these isomorphisms are natural, meaning that they behave well with
the morphisms.
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Ultrafilters of a Boolean algebra B correspond to
Boolean homomorphisms onto the 2-element Boolean algebra.
A possible world correspond to a map that tells whether a formula is
true or false in that world.
maximal ideals.
A possible world correspond to the collection of formulas that are
false in that world.
atoms (or coatoms) when the Boolean algebra is finite.
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Some examples

Finite sets with the discrete topology are dual to finite Boolean
algebras. In this case, Clop(X ) = P(X ).
The Stone-Čech compactification of a discrete space X is dual to
P(X ).
The one point compactification of any infinite discrete space X is
dual to the Boolean subalgebra of P(X ) consisting of the finite and
cofinite subsets of X .

E.g., when X is countable the one point compactification of X is
homeomorphic to the subspace {1 − 1/n : n ≥ 1} ∪ {1} of R.

0 1
2

2
3

3
4 1
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Boolean algebras

1-1 homomorphisms

Subalgebras

Onto homomorphisms

Homomorphic images

Binary products

Coproducts

Atoms

Stone spaces

Onto continuous maps

Stone equivalence relations

1-1 continuous maps

Closed subsets

Binary disjoint unions

Cartesian products

Isolated points
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Let 2 be the 2-element discrete topological space. We have seen that
FBA(n) is dual to 2n. In particular, FBA(1) is dual to 2.

Theorem
Let κ be a cardinal. Then FBA(κ) is dual to 2κ.

Proof. FBA(κ) is the coproduct of κ copies of FBA(1). Therefore, FBA(κ)
is dual to the cartesian product of κ copies of 2; i.e., 2κ.

Note that 2ω is homeomorphic to the Cantor space.

2κ is sometimes called a generalized Cantor space and can be thought of
as the vertexes of a κ-dimensional hypercube.
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Free distributive lattices via Priestley duality



A filter F of a (bounded) distributive lattice D is called prime if

a ∨ b ∈ F implies a ∈ F or b ∈ F .

Let Spec(D) be the spectrum of D; i.e., the collection of prime filters of D.

Note that prime filters do not coincide with maximal proper filters in a
distributive lattice. E.g., the 3-element chain has two prime filters, but
only one of them is maximal.

1

a

0

When D is finite, prime filters correspond to join-irreducibles, while
maximal proper filters correspond to atoms.
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Spec(D) can be equipped with different topologies. We define a topology
that makes Spec(D) into a Stone space.

Equip Spec(D) with the topology generated by the subbasis

{σ(a) : a ∈ D} ∪ {Spec(D) \ σ(a) : a ∈ D},

where σ(a) = {F ∈ Spec(D) : a ∈ F}.

We also order Spec(D) with the inclusion order ⊆. This makes Spec(D)
into an topological space equipped with a partial order; i.e., an ordered
topological space.

1

a

0

D

↑a

↑1

Spec(D)
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A subset U of a partially ordered set X is called an upset if it is upward
closed: x ∈ U and x ≤ y imply y ∈ U. Similarly, downward closed subsets
are called downsets.
Recall that a subset of a topological space is called clopen if it is both
closed and open. Let ClopUp(X ) be the collection of clopen upsets of a
partially ordered topological space X , which is a distributive lattice once
ordered by inclusion.
A Priestley space is a partially ordered topological space X such that

X is compact;
it satisfies the Priestley separation axiom:

x ≰ y implies ∃U ∈ ClopUp(X ) s.t. x ∈ U and y /∈ U.

yx

U
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Let DL be the category of distributive lattices and (bounded) lattice
homomorphisms.
Let Pries be the category of Priestley spaces and order preserving
continuous functions.

We obtain contravariant functors ClopUp: Pries → DL and
Spec: DL → Pries by setting

If h : A → B, then Spec(h) := h−1 : Spec(B) → Spec(A).
If f : X → Y , then ClopUp(f ) := f −1 : ClopUp(Y ) → ClopUp(X ).

Theorem (Priestley duality (Priestley 1970, 1972))
Spec and ClopUp establish a dual equivalence between DL and Pries.

In particular,
D ∼= ClopUp(Spec(D)) for every D ∈ DL,
X ∼= Spec(ClopUp(X )) for every X ∈ Pries,

and these isomorphisms are natural, meaning that they behave well with
the morphisms.
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Some examples
Finite posets with the discrete topology are duals to finite distributive
lattices. In this case, ClopUp(X ) is the set of upsets of X .
Every Stone space is a Priestley space with the identity order. So,
Priestley duality can be thought of as an extension of Stone duality
The same Stone space can have many orders making it into a
Priestley space.
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Distributive lattices

1-1 homomorphisms

Subalgebras

Onto homomorphisms

Homomorphic images

Binary products

Coproducts

Priestley spaces

Onto continuous order preserving
maps

Priestley quasiorders

1-1 continuous order preserving and
reflecting maps

Closed subsets

Binary disjoint unions

Cartesian products with product
order and product topology
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FDL(κ) is obtained as the set of terms in κ variables in the language of
bounded lattices up to equivalence in DL.

1

0

p

FDL(1)

1

0

p q

p ∨ q

p ∧ q

FDL(2)

DL is also locally finite: FDL(n) is finite for every n ∈ ω.
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The prime filters of FDL(n) are the upsets of its join irreducible elements.

1

0

p

FDL(1)

1

0

p q

p ∨ q

p ∧ q

FDL(2)
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We can reconstruct FDL(n) from its spectrum.

{1}

↑p

n = 1

↑(p ∧ q)

↑p ↑q

{1}

p q

n = 2
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Let 2 be the 2-element chain with the discrete topology. We have seen
that FDL(1) is dual to 2.

Theorem
Let κ be a cardinal. Then FDL(κ) is dual to 2

κ.

Proof. FDL(κ) is the coproduct of κ copies of FDL(1). Therefore, FDL(κ)
is dual to the product of κ copies of 2; i.e., 2κ.

2
κ can be thought of as the vertexes of a κ-dimensional hypercube ordered

componentwise.

Open problem: What is the cardinality of FDL(n) for n ≥ 10? Equivalently,
how many upsets of 2n are there? (look up Dedekind numbers)
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We can forget the order on a Priestley space and obtain a Stone space.
This yields a “forgetful” functor Pries → Stone.

On the algebraic side, this corresponds to a functor DL → BA that is left
adjoint to the inclusion functor BA ↪→ DL.

This functor sends a distributive lattice D to its free Boolean extension
B(D) (i.e., the Boolean algebra freely generated over D) having the
following universal property:

B(D) B

D

∃! h

g

for every lattice homomorphism
g : D → B into a Boolean algebra
there is a unique Boolean homo-
morphism h : B(D) → B making
the diagram commute.

The free Boolean extension of FDL(κ) is FBA(κ).

This is reflected in the fact that forgetting the order of 2κ gives exactly 2κ.
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Heyting algebras and Esakia duality



Intuitionistic propositional logic

Intuitionistic logic is the logic of constructive mathematics and has its
origins in Brouwer’s criticism of the use of the principle of the excluded
middle.

It is obtained by weakening the principles of classical logic via the rejection
of the law of excluded middle (p ∨ ¬p).

We denote by IPC the intuitionistic propositional calculus and the
connectives of IPC by ∧,∨,→,⊥,⊤. The negation ¬ is defined as an
abbreviation ¬φ := φ → ⊥.

35 / 71

luca
Comment on Text
For some introductory notes on IPC see [BdJ05].



BHK interpretation
In classical logic the propositional connectives have a truth functional
interpretation:

φ ∧ ψ is true iff φ is true and ψ is true,
φ ∨ ψ is true iff φ is true or ψ is true,
¬φ is true iff φ is not true

The BHK-interpretation of intuitionistic logic is based on the notion of
(informal) constructive proof instead of truth:

A proof of φ ∧ ψ consists of a proof of φ and a proof of ψ,
A proof of φ ∨ ψ consists of a proof of φ or a proof of ψ,
A proof of φ → ψ consists of a method of converting any proof of φ
into a proof of ψ,
No proof of ⊥ exists,
A proof of ¬φ then consists of a method of converting any proof of φ
into a proof of a contradiction.
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Examples of invalid formulas in IPC are
φ ∨ ¬φ (law of the excluded middle)
¬¬φ → φ (double negation law)
(¬ψ → ¬φ) → (φ → ψ) (contraposition)
¬(φ ∧ ψ) → ¬φ ∨ ¬ψ (one of the De Morgan laws)
¬φ ∨ ¬¬φ (law of the weak excluded middle)
(φ → ψ) → (¬φ ∨ ψ)

The following classical tautologies are also valid in IPC:
φ → ¬¬φ
¬φ ↔ ¬¬¬φ
(φ → ψ) → (¬ψ → ¬φ)
(¬φ ∨ ψ) → (φ → ψ)
the distributivity laws for ∧ and ∨
the remaining three implications in the De Morgan laws

37 / 71



A Heyting algebra (H,∧,∨,→, 0, 1) is a distributive lattice equipped with
a binary operation → satisfying

a ∧ b ≤ c iff a ≤ b → c

for any a, b, c ∈ H.

Let HA be the variety of Heyting algebras.

Examples:
Boolean algebras are Heyting algebras with a → b = ¬a ∨ b.
Let X be a topological space. Then the collection O(X ) of open
subsets of X ordered by inclusion is a Heyting algebra, where
U → V = int((X \ U) ∪ V ).
Let X be a poset. Then the collection Up(X ) of upsets of X ordered
by inclusion is a Heyting algebra, where U → V = X \ ↓(U \ V ) with
↓Y = {x ∈ X : x ≤ y for some y ∈ Y }.
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Similarly to what we did for Boolean algebras, we can define
Lindenbaum-Tarski algebras for IPC as Form(X )/∼, where

φ ∼ ψ iff IPC ⊢ φ ↔ ψ.

Theorem (Algebraic completeness of IPC)
Let t be a term corresponding to a formula φ. Then

HA ⊨ t = 1 iff IPC ⊢ φ.

Lindenbaum-Tarski algebras for IPC are exactly the free Heyting algebras.
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Recap

A Stone space is a topological space that is
Hausdorff,
compact,
zero-dimensional: the clopen (closed and open) subsets form a basis.

Theorem (Stone duality)
Ult and Clop establish a dual equivalence between BA and Stone.

Let 2 be the 2-element discrete topological space.

Theorem
FBA(κ) is dual to the Stone space 2κ.
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Recap

A Priestley space is a partially ordered topological space X such that
X is compact;
it satisfies the Priestley separation axiom:

x ≰ y implies ∃U ∈ ClopUp(X ) s.t. x ∈ U and y /∈ U.

Theorem (Priestley duality)
Spec and ClopUp establish a dual equivalence between DL and Pries.

Let 2 be the 2-element chain with the discrete topology.

Theorem
FDL(κ) is dual to the Priestley space 2

κ.
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Recap

A Heyting algebra (H,∧,∨,→, 0, 1) is a distributive lattice equipped with
a binary operation → satisfying

a ∧ b ≤ c iff a ≤ b → c

for any a, b, c ∈ H.

Theorem (Algebraic completeness of IPC)
Let t be a term corresponding to a formula φ. Then

HA ⊨ t = 1 iff IPC ⊢ φ.
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Priestley duality restricts to Esakia duality for Heyting algebras.

An Esakia space is a Priestley space X that satisfies the additional
condition:

If V is clopen (open), then ↓V := {x ∈ X : x ≤ y for some y ∈ V } is
clopen (open).

V

They can equivalently be defined as Stone spaces X equipped with a
partial order such that:

↑x := {y ∈ X : x ≤ y} is closed for every x ∈ X ,
↓V is clopen for every clopen subset V of X .
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Which of the following are Esakia spaces?

Esakia Esakia

not Esakia

V

Esakia

V is open but ↓V is not open.
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Not every lattice homomorphism between Heyting algebras is a Heyting
homomorphism because it doesn’t have to preserve implications.

A map f : X → Y between posets is called a p-morphism if it satisfies one
of the following equivalent conditions:

f [↑x ] = ↑f (x) for every x ∈ X ,
f −1[↓y ] = ↓f −1(y) for every y ∈ Y ,
f is order preserving and for all x ∈ X and y ∈ Y if f (x) ≤ y , then
there is z ≥ x such that f (z) = y .

x f (x)

y∃ z
f

Let Esa be the subcategory of Pries consisting of Esakia spaces and
continuous p-morphisms.
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If X is an Esakia space, then ClopUp(X ) is a Heyting algebra with
implication defined as

U → V = X \ ↓(U \ V ).

Then U → V is the collection of points x ∈ X such that

for every y ≥ x (if y ∈ U then y ∈ V ).

Moreover, U → V is the largest upset contained in (X \ U) ∪ V .

Theorem (Esakia duality (Esakia 1974))
The contravariant functors ClopUp and Spec restrict to a dual equivalence
between Esa and HA.
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Heyting algebras

1-1 homomorphisms

Subalgebras

Onto homomorphisms

Homomorphic images

Binary products

Coproducts

Esakia spaces

Onto continuous p-morphisms

Bisimulation equivalences

1-1 continuous p-morphisms

Closed upsets

Binary disjoint unions

(it’s complicated)
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What does FHA(κ) look like? What about its Esakia dual?
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FHA(1) is also known as the Rieger-Nishimura lattice.

p ∨ ¬p

p ¬p

⊥

¬¬p

¬p ∨ ¬¬p

¬¬p ∨ (¬¬p → p)

¬¬p → p

(¬¬p → p) → (p ∨ ¬p)

⊤

49 / 71



The Esakia dual of FHA(1) looks like this. The red point represents the
clopen upset generating FHA(1).

All its points are isolated except for the bottom.
This poset (minus the bottom) is known as the Rieger-Nishimura ladder.
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What about FHA(κ) for κ > 1?

Already FHA(2) is extremely complicated.

Theorem
The Esakia dual of FHA(2) has the cardinality of the continuum.

However, we will see that when n ∈ ω, we can understand a portion of the
Esakia dual of FHA(n) that contains enough information to reconstruct the
whole FHA(n).
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A point x of a poset has depth n if the greatest size of chains in ↑x is n.
We say that x is of finite depth if it is of depth n for some n ∈ ω.

Theorem
Let Xn be the Esakia dual of FHA(n) for n ∈ ω.

Xn contains finitely many points of depth m for every m ∈ ω.
For all m, each point of Xn that is not of finite depth is below a point
of depth m.
A point x ∈ Xn is of finite depth iff ↑x is finite iff x is isolated.
Points of finite depth form an open upset that is topologically dense.
Xn has a least element.
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The points of finite depth constitute the “upper part” of Xn, which is an
open upset dense in Xn. Moreover, the points in the upper part are exactly
the isolated points of Xn.

Xn

The points that are not of finite depth constitute the lower part, usually
called the remainder. For n ≥ 2 the remainder is extremely complicated to
understand. However, it always has a least element.
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Our goal is to describe the upper part of Xn. Note that the topology
doesn’t play any role there because all its points are isolated.

We will see that this portion of Xn can be constructed recursively
layer-by-layer and is called the n-universal model for IPC.

The idea behind this construction is to “glue together” all the duals of
finite n-generated Heyting algebras in a “universal way”.

We will use the coloring theorem to dually describe finite sets of
generators of Heyting algebras.

54 / 71



An equivalence relation E on a Stone space X is said to be a Stone
equivalence relation if X/E is a Stone space.

A Stone equivalence relation E on an Esakia space X is a bisimulation
equivalence (a.k.a. correct partition) when for every x , y , z ∈ X if xEy and
x ≤ z , then there is w ∈ X such that y ≤ w and zEw .

x y

∃ wz

Proposition
Let H be a Heyting algebra and X its Esakia dual. Then subalgebras of H
correspond to bisimulation equivalences on X .

Given a bisimulation equivalence E on X , the corresponding subalgebra of
ClopUp(X ) consists the E -saturated clopen upsets of X ; i.e., the
U ∈ ClopUp(X ) such that E [U] = U.
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Let X be a poset. We call n-coloring a map c : X → P(n) such that x ≤ y
implies c(x) ⊆ c(y).

If X is an Esakia space and U1, . . . ,Un ∈ ClopUp(X ), then we can define a
coloring by c(x) = {i : x ∈ Ui}. We think of c(x) as the color of x .

There is a correspondence between continuous (wrt the discrete topology
on P(n)) n-colorings and tuples U1, . . . ,Un ∈ ClopUp(X ).

Theorem (Coloring theorem (Esakia-Grigolia 1977))
U1, . . . ,Un generate ClopUp(X ) iff every nonidentity bisimulation
equivalence on X identifies two points of different colors.

Proof (sketch): A bisimulation equivalence only identifies points of the
same color iff it corresponds to a subalgebra of ClopUp(X ) containing
U1, . . . ,Un. So, the condition on the right is equivalent to saying that no
proper subalgebra of ClopUp(X ) contains U1, . . . ,Un; i.e., U1, . . . ,Un
generate ClopUp(X ).
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Let X be a finite poset (Esakia space). Then every nonidentity
bisimulation equivalence contains one of the form:

Alpha reduction: E is the identity on X except for a pair of elements
x , y ∈ X such that xEy and ↑x \ {x} = ↑y .

Beta reduction: E is the identity on X except for a pair of distinct
elements x , y ∈ X such that xEy and ↑x \ {x} = ↑y \ {y}.

Theorem (Coloring theorem for finite posets)
Let X be a finite poset. Then U1, . . . ,Un generate Up(X ) iff every alpha
or beta reduction on X identifies two points of different colors.
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When the n-coloring of a finite poset satisfies the condition of the coloring
theorem, the colored poset is called irreducible.

Finite n-colored irreducible posets correspond to n-generated finite Heyting
algebras.

Up to isomorphism, there is a unique n-colored poset Un with the
following property: every finite n-colored irreducible poset is isomorphic
(as a colored poset) to a unique upset of Un.

Un is called the n-universal model of IPC. The study of Un originates with
the works of Shehtman (1978) and Bellissima (1986).
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The n-universal model Un is built layer-by-layer starting from the top layer
by adding all the possible points satisfying the following conditions:

the top layer contains 2n points, one for each color;
if a point has only one immediate successor, then its color should be
strictly smaller than the one of its successor (alpha reduction);
two points of the same color cannot have the same elements as
immediate successors (beta reduction).
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The 1-universal model U1 is the Rieger-Nishimura ladder.

Colors
{1}

∅
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The layers of the 2-universal model U2 increase very quickly.

Colors
{1, 2}

{2}{1}

∅
How big is its third layer? More than 250 000 points!
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Un is the upper part of the Esakia dual Xn of FHA(n).

Theorem
Un is isomorphic to the upset of Xn consisting of its isolated points.
The coloring of Un is the restriction of the coloring of Xn induced by
the free generators of FHA(n) ∼= ClopUp(Xn).

Proof (idea): The finite upsets of Xn are dual to the finite homomorphic
images of FHA(n), which are the n-generated finite Heyting algebras.
Moreover, a homomorphism from FHA(n) onto a finite Heyting algebra is
completely determined by the image of the free generators of FHA(n).
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The “palette” of colors we used to build Un looks like 2
n. Why?

This is because FHA(n) can be seen as the free Heyting algebra over the
distributive lattice FDL(n) and the coloring c : Xn → 2

n induced by the
free generators is the Priestley dual of the universal lattice homomorphism
FDL(n) → FHA(n).

One can replace the “palette” 2
n with other finite posets to study Heyting

algebras free over arbitrary finite distributive lattices.

We also have that max Xn looks like 2n. Why?

This is because if X ∈ Esa is dual to H ∈ HA, then max X is a closed upset
corresponding to the regularization R(H) of H, which is a Boolean algebra.

Mapping H to R(H) defines a functor HA → BA that is left adjoint to the
inclusion BA → HA. This implies that the regularization of FHA(κ) is
isomorphic to FBA(κ).
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It turns out that the n-universal model is enough to reconstruct FHA(n).

By identifying FHA(n) with ClopUp(Xn), we can consider the Heyting
homomorphism e : FHA(n) → Up(Un) that maps V ∈ ClopUp(Xn) to
V ∩ Un.

Theorem
e : FHA(n) → Up(Un) is an embedding and its image is the subalgebra of
Up(Un) generated by the upsets {x : i ∈ c(x)} for i = 1, . . . , n.

Proof (sketch): Since HA is generated by the class of finite Heyting
algebras, an equation holds in FHA(n) iff it holds in all the finite
n-generated Heyting algebras. It follows that e is an embedding because
Up(Un) encodes the information about the n-generated finite Heyting
algebras.
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Up(U1) is isomorphic to FHA(1).
However, when n > 1, the algebra Up(Un) is uncountable, while
FHA(n) is not.

So, what’s Up(Un)? It is isomorphic to the profinite completion of FHA(n).

The profinite completion of an algebra A is the inverse limit of the system
consisting of the finite quotients of A.

Theorem (G. Bezhanishvili-Gehrke-Mines-Morandi 2006)
The profinite completion of a Heyting algebra H dual to an Esakia space
X is isomorphic to Up(Xfin), where Xfin = {x ∈ X : ↑x is finite}.

Recall that the points of the n-universal model correspond exactly to the
points of Xn whose upset is finite.
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There’s a different approach to build free Heyting algebras called the
step-by-step construction. It was developed for finitely generated free
Heyting algebras by Ghilardi (1992) who generalized some results of
Urquhart (1973). It has been recently generalized to infinitely many free
generators by Almeida (2024).

The idea is to start with the 0-th step FDL(κ) and think of it as the
collection of (equivalence classes of) intuitionistic propositional formulas
over κ variables that contain no implications.

Layers of implications are added step by step: at the n-th step we obtain
the distributive lattice consisting of (the equivalence classes of) all
formulas with at most n nested implications.

Then FHA(κ) is obtained as the directed limit of this chain of distributive
lattices. When κ is finite all these distributive lattices are finite, but the
limit isn’t.
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Dually, we start with 2
κ and create a new Priestley space at each step

whose points are particular closed subsets of the previous step.

This construction allowed Ghilardi to prove the following surprising fact:

Theorem
FHA(n) is a bi-Heyting algebra; i.e., its order-dual is also a Heyting algebra.
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Step-by-step for X1
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Step-by-step for X2: zeroth and first steps
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Step-by-step for X2: part of the second step
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Where to go from here? Some further readings
Free algebras in subvarieties of HA:

Local finiteness
(G. Bezhanishvili-Grigolia 2005,
Hyttinen-Martins-Moraschini-Quadrellaro 2025)
Free Gödel algebras (Grigolia 1987, Aguzzoli-Gerla-Marra 2008,
Carai 2024)

Free algebras in varieties of subreducts of Heyting algebras:
Free pseudocomplemented distributive lattices
(Urquhart 1973, Davey-Goldberg 1980)
Free implicative semilattices (Köhler 1981)

Free algebras in varieties of modal algebras:
Step-by-step (N. Bezhanishvili-Ghilardi-Jibladze 2014)
Universal models for Grz, S4, S4.3, GL (Grigolia 1983, 1987)
Free S4.3-algebras (Esakia-Grigolia 1975)
Free GL-algebras (van Gool 2014)
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Thank you for your attention
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