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I. Some context.
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Classification

Once a class of mathematical objects has been introduced, there is
an urge to understand exactly what that class is made of - try to
classify its elements.
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Classification

Once a class of mathematical objects has been introduced, there is
an urge to understand exactly what that class is made of - try to
classify its elements.

Usually, one only cares about these objects up to some notion of
isomorphism: for instance, two real vector fields of the same
dimension are thought of as being “the same”
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A definition, and a first solution
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A definition, and a first solution

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))
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A definition, and a first solution

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))

One can always classify an equivalence relation by taking
equivalence classes as complete invariants! That is, set

f (x) = {y ∈ X : x Ey } .
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A definition, and a first solution

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))

One can always classify an equivalence relation by taking
equivalence classes as complete invariants! That is, set

f (x) = {y ∈ X : x Ey } .

Hence we would like the set of invariants, and the map computing
the invariants, to be as concrete (explicit) as possible.
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“Church’s thesis for real mathematics‘”

In this talk,
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“Church’s thesis for real mathematics‘”

In this talk,

EXPLICIT=BOREL
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“Church’s thesis for real mathematics‘”

In this talk,

EXPLICIT=BOREL
For our notion of computability to be useful, our objects need to
be encoded so as to form a (standard) Borel space.
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Polish, Borel and analytic spaces

Definition

• A Polish space is a separable, completely metrizable
topological space. For instance, R, {0, 1}N, NN...
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Polish, Borel and analytic spaces

Definition

• A Polish space is a separable, completely metrizable
topological space. For instance, R, {0, 1}N, NN...

• Borel sets form the smallest family of sets which is closed
under complementation and countable union, and contains
the open sets.
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Polish, Borel and analytic spaces

Definition

• A Polish space is a separable, completely metrizable
topological space. For instance, R, {0, 1}N, NN...

• Borel sets form the smallest family of sets which is closed
under complementation and countable union, and contains
the open sets.

• A standard Borel space is a Polish space where one forgets the
topology and only keeps the Borel sets; all uncountable
standard Borel spaces are isomorphic (think of the real line
with its Borel structure).
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Polish, Borel and analytic spaces

Definition

• A Polish space is a separable, completely metrizable
topological space. For instance, R, {0, 1}N, NN...

• Borel sets form the smallest family of sets which is closed
under complementation and countable union, and contains
the open sets.

• A standard Borel space is a Polish space where one forgets the
topology and only keeps the Borel sets; all uncountable
standard Borel spaces are isomorphic (think of the real line
with its Borel structure).

• A subset A of a Polish space X is analytic if there exists some
continuous map f from a Polish space Y to X such that
A = f (Y ).
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Borel maps

Definition
Given two standard Borel spaces X ,Y , a map f : X → Y is Borel
iff f −1(A) is Borel for any Borel A.
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Borel maps

Definition
Given two standard Borel spaces X ,Y , a map f : X → Y is Borel
iff f −1(A) is Borel for any Borel A.

Theorem
f : X → Y is Borel iff its graph is Borel.
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Borel maps

Definition
Given two standard Borel spaces X ,Y , a map f : X → Y is Borel
iff f −1(A) is Borel for any Borel A.

Theorem
f : X → Y is Borel iff its graph is Borel.

This is due to the fundamental fact that a set is Borel iff it is both
analytic and coanalytic.
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Polish groups

Many equivalence relations appear as the orbit equivalence relation
for some group action Γ y X :

xEx ′ ⇔ ∃γ ∈ Γ γx = x ′ .
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Polish groups

Many equivalence relations appear as the orbit equivalence relation
for some group action Γ y X :

xEx ′ ⇔ ∃γ ∈ Γ γx = x ′ .

Definition
A Polish group is a topological group whose topology is Polish.
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Polish groups

Many equivalence relations appear as the orbit equivalence relation
for some group action Γ y X :

xEx ′ ⇔ ∃γ ∈ Γ γx = x ′ .

Definition
A Polish group is a topological group whose topology is Polish.

Examples

Countable groups; locally compact, metrisable groups; S∞, the
group of all permutations of the integers.
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II. Borel classification theory.
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Codings

It is often possible to encode a class of mathematical structures
(countable groups or graphs, compact metric spaces, separable
Banach spaces...) as elements of some standard Borel space.
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Codings

It is often possible to encode a class of mathematical structures
(countable groups or graphs, compact metric spaces, separable
Banach spaces...) as elements of some standard Borel space.

For instance, countable graphs (with universe N) may be identified
with all elements R ∈ {0, 1}N×N such that:

• ∀i , j R(i , j) = R(j , i)
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Codings

It is often possible to encode a class of mathematical structures
(countable groups or graphs, compact metric spaces, separable
Banach spaces...) as elements of some standard Borel space.

For instance, countable graphs (with universe N) may be identified
with all elements R ∈ {0, 1}N×N such that:

• ∀i , j R(i , j) = R(j , i)

• ∀i R(i , i) = 0
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Codings

It is often possible to encode a class of mathematical structures
(countable groups or graphs, compact metric spaces, separable
Banach spaces...) as elements of some standard Borel space.

For instance, countable graphs (with universe N) may be identified
with all elements R ∈ {0, 1}N×N such that:

• ∀i , j R(i , j) = R(j , i)

• ∀i R(i , i) = 0

Then graphs with universe N form a closed subset of the Cantor
space {0, 1}N×N, and can be seen as a standard Borel space.
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Codings

It is often possible to encode a class of mathematical structures
(countable groups or graphs, compact metric spaces, separable
Banach spaces...) as elements of some standard Borel space.

For instance, countable graphs (with universe N) may be identified
with all elements R ∈ {0, 1}N×N such that:

• ∀i , j R(i , j) = R(j , i)

• ∀i R(i , i) = 0

Then graphs with universe N form a closed subset of the Cantor
space {0, 1}N×N, and can be seen as a standard Borel space.

One may code the same objects in various ways; it is conceivable
that the coding can have an influence on the complexity of the
classification problem. There seems to be some work to do here!
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Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that
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Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that

• ∀n,m ∃! p α(n,m, p) = 1 (below we write p = α(n,m))
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Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that

• ∀n,m ∃! p α(n,m, p) = 1 (below we write p = α(n,m))

• ∃n∀m m = α(n,m) = α(m, n) (neutral element, denoted by e below)

J. Melleray Borel complexity of classification problems



Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that

• ∀n,m ∃! p α(n,m, p) = 1 (below we write p = α(n,m))

• ∃n∀m m = α(n,m) = α(m, n) (neutral element, denoted by e below)

• ∀n,m, p α(n, α(m, p)) = α(α(n,m), p) (associativity)
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Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that

• ∀n,m ∃! p α(n,m, p) = 1 (below we write p = α(n,m))

• ∃n∀m m = α(n,m) = α(m, n) (neutral element, denoted by e below)

• ∀n,m, p α(n, α(m, p)) = α(α(n,m), p) (associativity)

• ∀n ∃m
(

α(n,m) = e and α(m, n) = e
)

(inverse)
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Another example

Example

We can think of any countable group as having underlying set N;
the group is then determined by its multiplication table.
Let us define GROUP ⊂ {0, 1}N×N×N as the set of all α such that

• ∀n,m ∃! p α(n,m, p) = 1 (below we write p = α(n,m))

• ∃n∀m m = α(n,m) = α(m, n) (neutral element, denoted by e below)

• ∀n,m, p α(n, α(m, p)) = α(α(n,m), p) (associativity)

• ∀n ∃m
(

α(n,m) = e and α(m, n) = e
)

(inverse)

GROUP is Borel in {0, 1}N×N×N and is thus a standard Borel
space.
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Complete invariants

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))

J. Melleray Borel complexity of classification problems



Complete invariants

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))

The classification is said to be Borel if f and I are Borel.
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Complete invariants

Definition
If E is an equivalence relation on X , a classification of E is: a set I
(the invariants) and a function f : X → I such that

∀x , y ∈ X (x E y) ⇔ (f (x) = f (y))

The classification is said to be Borel if f and I are Borel.

If E admits a Borel classification then we say that E is smooth (or
concretely classifiable).
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Unfortunately...

It is often the case that the relations we care about are not
smooth... but we may still compare their complexities!

J. Melleray Borel complexity of classification problems



Unfortunately...

It is often the case that the relations we care about are not
smooth... but we may still compare their complexities!

Definition (Friedman–Stanley)

Let E ,F be two equivalence relations on standard Borel spaces
X ,Y . One says that E Borel reduces to F (E ≤B F ) if there exists
a Borel map ϕ : X → Y such that

∀x , y ∈ X (x E y) ⇔ (ϕ(x)F ϕ(y)) .
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Unfortunately...

It is often the case that the relations we care about are not
smooth... but we may still compare their complexities!

Definition (Friedman–Stanley)

Let E ,F be two equivalence relations on standard Borel spaces
X ,Y . One says that E Borel reduces to F (E ≤B F ) if there exists
a Borel map ϕ : X → Y such that

∀x , y ∈ X (x E y) ⇔ (ϕ(x)F ϕ(y)) .

If f : X → Y is a Borel reduction of E to F , then from a Borel
classification of F one obtains a Borel classification of E . More
generally this gives us a precise way to articulate the idea that E is
simpler than F .
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First examples

E is smooth if E ≤B=R.
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First examples

E is smooth if E ≤B=R.

Definition
On {0, 1}N one defines E0 by

x E0 y ⇔ ∃n∀m ≥ n x(m) = y(m)
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First examples

E is smooth if E ≤B=R.

Definition
On {0, 1}N one defines E0 by

x E0 y ⇔ ∃n∀m ≥ n x(m) = y(m)

This relation is bireducible with the Vitali equivalence relation on
R: x ∼ y ⇔ x − y ∈ Q. The argument used in measure theory
classes to produce a non-measurable set from a transversal for this
relation proves that E0 is not smooth.
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Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a
subgroup of Q). For a ∈ G and p a prime number one defines the
p-type of a tp(a) ∈ N ∪ {∞} by

tp(a) = sup{n : a is divisible by pn}
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Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a
subgroup of Q). For a ∈ G and p a prime number one defines the
p-type of a tp(a) ∈ N ∪ {∞} by

tp(a) = sup{n : a is divisible by pn}

Then one defines the type of a, by

t(a) = (tp(a))p prime
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Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a
subgroup of Q). For a ∈ G and p a prime number one defines the
p-type of a tp(a) ∈ N ∪ {∞} by

tp(a) = sup{n : a is divisible by pn}

Then one defines the type of a, by

t(a) = (tp(a))p prime

Two types are equivalent if they coincide on all but finitely many
indices, and the difference of those coordinates is finite.
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Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a
subgroup of Q). For a ∈ G and p a prime number one defines the
p-type of a tp(a) ∈ N ∪ {∞} by

tp(a) = sup{n : a is divisible by pn}

Then one defines the type of a, by

t(a) = (tp(a))p prime

Two types are equivalent if they coincide on all but finitely many
indices, and the difference of those coordinates is finite. Any two
non-neutral elements in G have equivalent types, which enables
one to define the type of G .
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Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a
subgroup of Q). For a ∈ G and p a prime number one defines the
p-type of a tp(a) ∈ N ∪ {∞} by

tp(a) = sup{n : a is divisible by pn}

Then one defines the type of a, by

t(a) = (tp(a))p prime

Two types are equivalent if they coincide on all but finitely many
indices, and the difference of those coordinates is finite. Any two
non-neutral elements in G have equivalent types, which enables
one to define the type of G .
Baer proved that two torsion-free abelian groups are isomorphic iff
they have the same type (which gives a relation bireducible to E0).
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Borel actions of Polish groups.

Definition
An action of a Polish group G on a standard Borel space X is
Borel X if the map (g , x) 7→ g .x is Borel.
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Borel actions of Polish groups.

Definition
An action of a Polish group G on a standard Borel space X is
Borel X if the map (g , x) 7→ g .x is Borel.

Definition
An equivalence relation E on X is Borel if it is a Borel subset of
X 2 (and similarly with analytic/coanalytic).
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Borel actions of Polish groups.

Definition
An action of a Polish group G on a standard Borel space X is
Borel X if the map (g , x) 7→ g .x is Borel.

Definition
An equivalence relation E on X is Borel if it is a Borel subset of
X 2 (and similarly with analytic/coanalytic).

Remark
If the action of G on X is Borel then the associated relation EX

G is
analytic (even, Borel in some cases, for instance if the action is free
or G is countable).
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Borel actions of Polish groups.

Definition
An action of a Polish group G on a standard Borel space X is
Borel X if the map (g , x) 7→ g .x is Borel.

Definition
An equivalence relation E on X is Borel if it is a Borel subset of
X 2 (and similarly with analytic/coanalytic).

Remark
If the action of G on X is Borel then the associated relation EX

G is
analytic (even, Borel in some cases, for instance if the action is free
or G is countable).

Example

The isomorphism relation beween countable groups, as coded
above, is induced by the natural action of S∞ on the standard
Borel space GROUP . This relation is analytic non Borel.

J. Melleray Borel complexity of classification problems



A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Definition
Given a set X , =X stands for the relation
of equality on X .
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Definition
Given a set X , =X stands for the relation
of equality on X .

Theorem (Silver)

Let E be a Borel equivalence relation
(even, coanalytic).
Then either E ≤B =N or =R≤B E .
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Theorem (Harrington–Kechris–Louveau)

Let E be a Borel equivalence relation.
Then either E ≤B=R or E0 ≤B E .
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Definition
E is a countable Borel equivalence relation
if all E -classes are at most countable.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Definition
E is a countable Borel equivalence relation
if all E -classes are at most countable.

Theorem
There exists a universal countable Borel
equivalence relation E∞
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Definition
E is a countable Borel equivalence relation
if all E -classes are at most countable.

Theorem
There exists a universal countable Borel
equivalence relation E∞

Example (Dougherty–Jackson–Kechris)

The relation induced by the shift action of
F2 on {0, 1}F2 is a universal countable
Borel equivalence relation.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Theorem (Becker–Kechris)

For any Polish group G there exists a
universal relation EG

∞
for relations induced

by a Borel G -action.
If G is countable, the shift action of G on
(2N)G is ∼B EG

∞
.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞

Theorem (Becker–Kechris)

For any Polish group G there exists a
universal relation EG

∞
for relations induced

by a Borel G -action.
If G is countable, the shift action of G on
(2N)G is ∼B EG

∞
.

Example (Friedman–Stanley)

The relation of isomorphism between
countable groups (or graphs, or linear
orders...) is ∼B ES∞

∞
.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞ Theorem (Becker–Kechris)

There exists a universal relation E
pol
∞ for

relations induced by a Polish group action

.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞ Theorem (Becker–Kechris)

There exists a universal relation E
pol
∞ for

relations induced by a Polish group action

Remark
All Borel equivalence relations do not
reduce to such a relation; also, there is no
universal Borel equivalence relation.

.

.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞ Theorem (Becker–Kechris)

There exists a universal relation E
pol
∞ for

relations induced by a Polish group action

Remark
All Borel equivalence relations do not
reduce to such a relation; also, there is no
universal Borel equivalence relation.
However there exists a universal analytic
equivalence relation E an

∞
.

.
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A map of the universe.

=0

=n

=N

=R

E0

E∞

ES∞
∞

E
pol
∞

E an
∞ Theorem (Becker–Kechris)

There exists a universal relation E
pol
∞ for

relations induced by a Polish group action

Remark
All Borel equivalence relations do not
reduce to such a relation; also, there is no
universal Borel equivalence relation.
However there exists a universal analytic
equivalence relation E an

∞
.

Example

The isometry relation between Polish
metric spaces is ∼b E

pol
∞ (Gao-Kechris);

same for isometry between separable
Banach spaces (M.).
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Countable Borel equivalence relations

=R

E0

≈n

≈n+1

≈tf

E∞

∼B ≈0

∼B ≈1

Theorem (Feldman–Moore)

Any countable Borel equivalence
relation is induced by a Borel action
of a countable (discrete) group G .
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Countable Borel equivalence relations

=R

E0

≈n

≈n+1

≈tf

E∞

∼B ≈0

∼B ≈1

Theorem (Feldman–Moore)

Any countable Borel equivalence
relation is induced by a Borel action
of a countable (discrete) group G .

Theorem
(Dougherty–Jackson–Kechris)

Let E be a countable Borel
equivalence relation. Then E ≤B E0

iff E is induced by a Borel action of
Z.
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Countable Borel equivalence relations

=R

E0

≈n

≈n+1

≈tf

E∞

∼B ≈0

∼B ≈1

Theorem (Feldman–Moore)

Any countable Borel equivalence
relation is induced by a Borel action
of a countable (discrete) group G .

Theorem
(Dougherty–Jackson–Kechris)

Let E be a countable Borel
equivalence relation. Then E ≤B E0

iff E is induced by a Borel action of
Z.

Improved to Zn (Weiss) then abelian
(Gao–Jackson) then locally nilpotent
(Seward–Schneider); open for
amenable.
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Countable Borel equivalence relations

=R

≈1

≈n

≈n+1

≈tf

E∞

∼b ≈0

∼B ≈1

Example

The relation ≈n of isomorphism
between torsion-free abelian groups
of rank ≤ n is countable Borel.
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Countable Borel equivalence relations

=R

≈1

≈n

≈n+1

≈tf

E∞

∼b ≈0

∼B ≈1

Example

The relation ≈n of isomorphism
between torsion-free abelian groups
of rank ≤ n is countable Borel.

Theorem (Thomas)

For all n one has ≈n<B≈n+1.
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Countable Borel equivalence relations

=R

E0

≈n

≈n+1

≈tf

E∞

∼b ≈0

∼B ≈1

Example

The relation ≈n of isomorphism
between torsion-free abelian groups
of rank ≤ n is countable Borel.

Theorem (Thomas)

For all n one has ≈n<B≈n+1.

Theorem (Thomas)

The relation ≈tf is not universal for
countable Borel equivalence
relations.
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Countable Borel equivalence relations

Here be monsters

=R

E0

E∞

Theorem (Adams–Kechris)

There exists an order-preserving map
from (P(N),⊆) to countable Borel
equivalence relations with ≤B .
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Countable Borel equivalence relations

Here be monsters

=R

E0

E∞

Theorem (Adams–Kechris)

There exists an order-preserving map
from (P(N),⊆) to countable Borel
equivalence relations with ≤B .

Not much is known about the partial
ordering there (for instance,
existence of relations with an
immediate successor besides =R?).
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Countable Borel equivalence relations

Essentially free 

relations

=R

E0

E∞

Theorem (Thomas)

There exist countable Borel
equivalence relations which do not
reduce to a relation induced by a free

action of a countable group.
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The Vaught conjecture(s)

Question
Assume E is induced by a Borel action of S∞. Is it true that E has
either countably many or continuum many classes?
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The Vaught conjecture(s)

Question
Assume E is induced by a Borel action of S∞. Is it true that E has
either countably many or continuum many classes?

The same question is open in general for Polish groups. Of course
it is trivial in a universe where the continuum hypothesis holds,
which is not the case of the following variant.
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The Vaught conjecture(s)

Question
Assume E is induced by a Borel action of S∞. Is it true that E has
either countably many or continuum many classes?

The same question is open in general for Polish groups. Of course
it is trivial in a universe where the continuum hypothesis holds,
which is not the case of the following variant.

Question
Let E be induced by a Borel action of a Polish group. Is it true
that either E ≤B=N or =R≤B E?
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Groups, as men, shall be known by their actions

Question
Assume that G is a Polish group such that the universal
equivalence relation induced by a Borel G -action is universal for
relations induced by a Polish group action. Must G be a universal
Polish group?
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Groups, as men, shall be known by their actions

Question
Assume that G is a Polish group such that the universal
equivalence relation induced by a Borel G -action is universal for
relations induced by a Polish group action. Must G be a universal
Polish group?

Note: already a very interesting (and probably very difficult)
problem for the unitary group of a separable Hilbert space - how to
prove that is universal equivalence relation is not universal for
Polish group actions?
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Thank you for your attention!
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