An introduction to the theory of Borel complexity of classification problems

J. Melleray
Institut Camille Jordan (Université Lyon 1)

I. Some context.

Classification

Once a class of mathematical objects has been introduced, there is an urge to understand exactly what that class is made of - try to classify its elements.

Classification

Once a class of mathematical objects has been introduced, there is an urge to understand exactly what that class is made of - try to classify its elements.

Usually, one only cares about these objects up to some notion of isomorphism: for instance, two real vector fields of the same dimension are thought of as being "the same"

A definition, and a first solution

Definition

If E is an equivalence relation on X, a classification of E is: a set $/$ (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

A definition, and a first solution

Definition

If E is an equivalence relation on X, a classification of E is: a set I (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

One can always classify an equivalence relation by taking equivalence classes as complete invariants! That is, set

$$
f(x)=\{y \in X: x E y\}
$$

A definition, and a first solution

Definition

If E is an equivalence relation on X, a classification of E is: a set I (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

One can always classify an equivalence relation by taking equivalence classes as complete invariants! That is, set

$$
f(x)=\{y \in X: x E y\}
$$

Hence we would like the set of invariants, and the map computing the invariants, to be as concrete (explicit) as possible.

"Church's thesis for real mathematics""

In this talk,

"Church's thesis for real mathematics""

In this talk,

EXPLICIT=BOREL

In this talk,
EXPLICIT=BOREL

For our notion of computability to be useful, our objects need to be encoded so as to form a (standard) Borel space.

Polish, Borel and analytic spaces

Definition

- A Polish space is a separable, completely metrizable topological space. For instance, $\mathbb{R},\{0,1\}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}} \ldots$

Polish, Borel and analytic spaces

Definition

- A Polish space is a separable, completely metrizable topological space. For instance, $\mathbb{R},\{0,1\}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}} \ldots$
- Borel sets form the smallest family of sets which is closed under complementation and countable union, and contains the open sets.

Polish, Borel and analytic spaces

Definition

- A Polish space is a separable, completely metrizable topological space. For instance, $\mathbb{R},\{0,1\}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}} \ldots$
- Borel sets form the smallest family of sets which is closed under complementation and countable union, and contains the open sets.
- A standard Borel space is a Polish space where one forgets the topology and only keeps the Borel sets; all uncountable standard Borel spaces are isomorphic (think of the real line with its Borel structure).

Polish, Borel and analytic spaces

Definition

- A Polish space is a separable, completely metrizable topological space. For instance, $\mathbb{R},\{0,1\}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}} \ldots$
- Borel sets form the smallest family of sets which is closed under complementation and countable union, and contains the open sets.
- A standard Borel space is a Polish space where one forgets the topology and only keeps the Borel sets; all uncountable standard Borel spaces are isomorphic (think of the real line with its Borel structure).
- A subset A of a Polish space X is analytic if there exists some continuous map f from a Polish space Y to X such that $A=f(Y)$.

Borel maps

Definition

Given two standard Borel spaces X, Y, a map $f: X \rightarrow Y$ is Borel iff $f^{-1}(A)$ is Borel for any Borel A.

Borel maps

Definition
Given two standard Borel spaces X, Y, a map $f: X \rightarrow Y$ is Borel iff $f^{-1}(A)$ is Borel for any Borel A.

Theorem
$f: X \rightarrow Y$ is Borel iff its graph is Borel.

Borel maps

Definition

Given two standard Borel spaces X, Y, a map $f: X \rightarrow Y$ is Borel iff $f^{-1}(A)$ is Borel for any Borel A.

Theorem
$f: X \rightarrow Y$ is Borel iff its graph is Borel.
This is due to the fundamental fact that a set is Borel iff it is both analytic and coanalytic.

Polish groups

Many equivalence relations appear as the orbit equivalence relation for some group action $\Gamma \curvearrowright X$:

$$
x E x^{\prime} \Leftrightarrow \exists \gamma \in \Gamma \gamma x=x^{\prime}
$$

Polish groups

Many equivalence relations appear as the orbit equivalence relation for some group action $\Gamma \curvearrowright X$:

$$
x E x^{\prime} \Leftrightarrow \exists \gamma \in \Gamma \gamma x=x^{\prime}
$$

Definition

A Polish group is a topological group whose topology is Polish.

Polish groups

Many equivalence relations appear as the orbit equivalence relation for some group action $\Gamma \curvearrowright X$:

$$
x E x^{\prime} \Leftrightarrow \exists \gamma \in \Gamma \gamma x=x^{\prime}
$$

Definition

A Polish group is a topological group whose topology is Polish.

Examples

Countable groups; locally compact, metrisable groups; S_{∞}, the group of all permutations of the integers.

II. Borel classification theory.

Codings

It is often possible to encode a class of mathematical structures (countable groups or graphs, compact metric spaces, separable Banach spaces...) as elements of some standard Borel space.

Codings

It is often possible to encode a class of mathematical structures (countable groups or graphs, compact metric spaces, separable Banach spaces...) as elements of some standard Borel space.
For instance, countable graphs (with universe \mathbb{N}) may be identified with all elements $R \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that:

- $\forall i, j R(i, j)=R(j, i)$

Codings

It is often possible to encode a class of mathematical structures (countable groups or graphs, compact metric spaces, separable Banach spaces...) as elements of some standard Borel space.
For instance, countable graphs (with universe \mathbb{N}) may be identified with all elements $R \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that:

- $\forall i, j R(i, j)=R(j, i)$
- $\forall i R(i, i)=0$

Codings

It is often possible to encode a class of mathematical structures (countable groups or graphs, compact metric spaces, separable Banach spaces...) as elements of some standard Borel space.
For instance, countable graphs (with universe \mathbb{N}) may be identified with all elements $R \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that:

- $\forall i, j R(i, j)=R(j, i)$
- $\forall i R(i, i)=0$

Then graphs with universe \mathbb{N} form a closed subset of the Cantor space $\{0,1\}^{\mathbb{N} \times \mathbb{N}}$, and can be seen as a standard Borel space.

Codings

It is often possible to encode a class of mathematical structures (countable groups or graphs, compact metric spaces, separable Banach spaces...) as elements of some standard Borel space.
For instance, countable graphs (with universe \mathbb{N}) may be identified with all elements $R \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that:

- $\forall i, j R(i, j)=R(j, i)$
- $\forall i R(i, i)=0$

Then graphs with universe \mathbb{N} form a closed subset of the Cantor space $\{0,1\}^{\mathbb{N} \times \mathbb{N}}$, and can be seen as a standard Borel space.
One may code the same objects in various ways; it is conceivable that the coding can have an influence on the complexity of the classification problem. There seems to be some work to do here!

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

- $\forall n, m \exists!p \alpha(n, m, p)=1$
(below we write $p=\alpha(n, m)$)

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

- $\forall n, m \exists!p \alpha(n, m, p)=1$
(below we write $p=\alpha(n, m)$)
- $\exists n \forall m m=\alpha(n, m)=\alpha(m, n) \quad$ (neutral element, denoted by e below)

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

- $\forall n, m \exists!p \alpha(n, m, p)=1$
(below we write $p=\alpha(n, m)$)
- $\exists n \forall m m=\alpha(n, m)=\alpha(m, n) \quad$ (neutral element, denoted by e below)
- $\forall n, m, p \alpha(n, \alpha(m, p))=\alpha(\alpha(n, m), p)$
(associativity)

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

- $\forall n, m \exists!p \alpha(n, m, p)=1$
(below we write $p=\alpha(n, m)$)
- $\exists n \forall m m=\alpha(n, m)=\alpha(m, n) \quad$ (neutral element, denoted by e below)
- $\forall n, m, p \alpha(n, \alpha(m, p))=\alpha(\alpha(n, m), p)$
(associativity)
- $\forall n \exists m(\alpha(n, m)=e$ and $\alpha(m, n)=e)$

Another example

Example

We can think of any countable group as having underlying set \mathbb{N}; the group is then determined by its multiplication table.
Let us define $G R O U P \subset\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ as the set of all α such that

- $\forall n, m \exists!p \alpha(n, m, p)=1$
(below we write $p=\alpha(n, m)$)
- $\exists n \forall m m=\alpha(n, m)=\alpha(m, n) \quad$ (neutral element, denoted by e below)
- $\forall n, m, p \alpha(n, \alpha(m, p))=\alpha(\alpha(n, m), p)$
(associativity)
- $\forall n \exists m(\alpha(n, m)=e$ and $\alpha(m, n)=e)$

GROUP is Borel in $\{0,1\}^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ and is thus a standard Borel space.

Complete invariants

Definition

If E is an equivalence relation on X, a classification of E is: a set I (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

Complete invariants

Definition

If E is an equivalence relation on X, a classification of E is: a set I (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

The classification is said to be Borel if f and I are Borel.

Complete invariants

Definition

If E is an equivalence relation on X, a classification of E is: a set I (the invariants) and a function $f: X \rightarrow I$ such that

$$
\forall x, y \in X(x E y) \Leftrightarrow(f(x)=f(y))
$$

The classification is said to be Borel if f and I are Borel.
If E admits a Borel classification then we say that E is smooth (or concretely classifiable).

Unfortunately...

It is often the case that the relations we care about are not smooth... but we may still compare their complexities!

Unfortunately...

It is often the case that the relations we care about are not smooth... but we may still compare their complexities!

Definition (Friedman-Stanley)
Let E, F be two equivalence relations on standard Borel spaces X, Y. One says that E Borel reduces to $F\left(E \leq_{B} F\right)$ if there exists
a Borel map $\varphi: X \rightarrow Y$ such that

$$
\forall x, y \in X \quad(x E y) \Leftrightarrow(\varphi(x) F \varphi(y))
$$

Unfortunately...

It is often the case that the relations we care about are not smooth... but we may still compare their complexities!

Definition (Friedman-Stanley)
Let E, F be two equivalence relations on standard Borel spaces X, Y. One says that E Borel reduces to $F\left(E \leq_{B} F\right)$ if there exists a Borel map $\varphi: X \rightarrow Y$ such that

$$
\forall x, y \in X \quad(x E y) \Leftrightarrow(\varphi(x) F \varphi(y)) .
$$

If $f: X \rightarrow Y$ is a Borel reduction of E to F, then from a Borel classification of F one obtains a Borel classification of E. More generally this gives us a precise way to articulate the idea that E is simpler than F.

First examples

E is smooth if $E \leq_{B}=\mathbb{R}$.

First examples

E is smooth if $E \leq_{B}=\mathbb{R}$.
Definition
On $\{0,1\}^{\mathbb{N}}$ one defines E_{0} by

$$
x E_{0} y \Leftrightarrow \exists n \forall m \geq n x(m)=y(m)
$$

First examples

E is smooth if $E \leq_{B}=\mathbb{R}$.
Definition
On $\{0,1\}^{\mathbb{N}}$ one defines E_{0} by

$$
x E_{0} y \Leftrightarrow \exists n \forall m \geq n \times(m)=y(m)
$$

This relation is bireducible with the Vitali equivalence relation on $\mathbb{R}: x \sim y \Leftrightarrow x-y \in \mathbb{Q}$. The argument used in measure theory classes to produce a non-measurable set from a transversal for this relation proves that E_{0} is not smooth.

Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a subgroup of \mathbb{Q}). For $a \in G$ and p a prime number one defines the p-type of a $t_{p}(a) \in \mathbb{N} \cup\{\infty\}$ by

$$
t_{p}(a)=\sup \left\{n: a \text { is divisible by } p^{n}\right\}
$$

Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a subgroup of \mathbb{Q}). For $a \in G$ and p a prime number one defines the p-type of a $t_{p}(a) \in \mathbb{N} \cup\{\infty\}$ by

$$
t_{p}(a)=\sup \left\{n: a \text { is divisible by } p^{n}\right\}
$$

Then one defines the type of a, by

$$
t(a)=\left(t_{p}(a)\right)_{p \text { prime }}
$$

Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a subgroup of \mathbb{Q}). For $a \in G$ and p a prime number one defines the p-type of a $t_{p}(a) \in \mathbb{N} \cup\{\infty\}$ by

$$
t_{p}(a)=\sup \left\{n: a \text { is divisible by } p^{n}\right\}
$$

Then one defines the type of a, by

$$
t(a)=\left(t_{p}(a)\right)_{p \text { prime }}
$$

Two types are equivalent if they coincide on all but finitely many indices, and the difference of those coordinates is finite.

Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a subgroup of \mathbb{Q}). For $a \in G$ and p a prime number one defines the p-type of a $t_{p}(a) \in \mathbb{N} \cup\{\infty\}$ by

$$
t_{p}(a)=\sup \left\{n: a \text { is divisible by } p^{n}\right\}
$$

Then one defines the type of a, by

$$
t(a)=\left(t_{p}(a)\right)_{p \text { prime }}
$$

Two types are equivalent if they coincide on all but finitely many indices, and the difference of those coordinates is finite. Any two non-neutral elements in G have equivalent types, which enables one to define the type of G.

Classification of countable abelian groups of rank 1

Let G be a countable torsion-free abelian group of rank 1 (i.e. a subgroup of \mathbb{Q}). For $a \in G$ and p a prime number one defines the p-type of a $t_{p}(a) \in \mathbb{N} \cup\{\infty\}$ by

$$
t_{p}(a)=\sup \left\{n: a \text { is divisible by } p^{n}\right\}
$$

Then one defines the type of a, by

$$
t(a)=\left(t_{p}(a)\right)_{p \text { prime }}
$$

Two types are equivalent if they coincide on all but finitely many indices, and the difference of those coordinates is finite. Any two non-neutral elements in G have equivalent types, which enables one to define the type of G.
Baer proved that two torsion-free abelian groups are isomorphic iff they have the same type (which gives a relation bireducible to E_{0}).

Borel actions of Polish groups.

Definition

An action of a Polish group G on a standard Borel space X is Borel X if the map $(g, x) \mapsto g . x$ is Borel.

Borel actions of Polish groups.

Definition

An action of a Polish group G on a standard Borel space X is Borel X if the map $(g, x) \mapsto g . x$ is Borel.

Definition
An equivalence relation E on X is Borel if it is a Borel subset of X^{2} (and similarly with analytic/coanalytic).

Borel actions of Polish groups.

Definition

An action of a Polish group G on a standard Borel space X is Borel X if the map $(g, x) \mapsto g . x$ is Borel.

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X^{2} (and similarly with analytic/coanalytic).

Remark

If the action of G on X is Borel then the associated relation E_{G}^{X} is analytic (even, Borel in some cases, for instance if the action is free or G is countable).

Borel actions of Polish groups.

Definition

An action of a Polish group G on a standard Borel space X is Borel X if the map $(g, x) \mapsto g . x$ is Borel.

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X^{2} (and similarly with analytic/coanalytic).

Remark

If the action of G on X is Borel then the associated relation E_{G}^{X} is analytic (even, Borel in some cases, for instance if the action is free or G is countable).

Example
The isomorphism relation beween countable groups, as coded above, is induced by the natural action of S_{∞} on the standard Borel space GROUP. This relation is analytic non Borel.

A map of the universe.

Definition

Given a set $X,=x$ stands for the relation of equality on X.

A map of the universe.

Definition

Given a set $X,=x$ stands for the relation of equality on X.

Theorem (Silver)
Let E be a Borel equivalence relation (even, coanalytic).
Then either $E \leq_{B}=\mathbb{N}$ or $=_{\mathbb{R}} \leq_{B} E$.

A map of the universe.

Theorem (Harrington-Kechris-Louveau) Let E be a Borel equivalence relation. Then either $E \leq_{B}=\mathbb{R}$ or $E_{0} \leq_{B} E$.

A map of the universe.

Definition

E is a countable Borel equivalence relation if all E-classes are at most countable.

A map of the universe.

Definition

E is a countable Borel equivalence relation if all E-classes are at most countable.

Theorem
There exists a universal countable Borel equivalence relation E_{∞}

A map of the universe.

Definition

E is a countable Borel equivalence relation if all E-classes are at most countable.

Theorem
There exists a universal countable Borel equivalence relation E_{∞}

Example (Dougherty-Jackson-Kechris)
The relation induced by the shift action of F_{2} on $\{0,1\}^{F_{2}}$ is a universal countable Borel equivalence relation.

A map of the universe.

Theorem (Becker-Kechris)

For any Polish group G there exists a universal relation E_{∞}^{G} for relations induced by a Borel G-action.
If G is countable, the shift action of G on $\left(2^{\mathbb{N}}\right)^{G}$ is $\sim_{B} E_{\infty}^{G}$.

A map of the universe.

Theorem (Becker-Kechris)

For any Polish group G there exists a universal relation E_{∞}^{G} for relations induced by a Borel G-action.
If G is countable, the shift action of G on $\left(2^{\mathbb{N}}\right)^{G}$ is $\sim_{B} E_{\infty}^{G}$.

Example (Friedman-Stanley)
The relation of isomorphism between countable groups (or graphs, or linear orders...) is $\sim_{B} E_{\infty}^{S_{\infty}}$.

A map of the universe.

Theorem (Becker-Kechris)

There exists a universal relation $E_{\infty}^{p o l}$ for relations induced by a Polish group action

A map of the universe.

Theorem (Becker-Kechris)

There exists a universal relation $E_{\infty}^{p o l}$ for relations induced by a Polish group action

Remark

All Borel equivalence relations do not reduce to such a relation; also, there is no universal Borel equivalence relation.

A map of the universe.

Theorem (Becker-Kechris)

There exists a universal relation $E_{\infty}^{p o l}$ for relations induced by a Polish group action

Remark

All Borel equivalence relations do not reduce to such a relation; also, there is no universal Borel equivalence relation. However there exists a universal analytic equivalence relation $E_{\infty}^{a n}$.

A map of the universe.

Theorem (Becker-Kechris)

There exists a universal relation $E_{\infty}^{p o l}$ for relations induced by a Polish group action

Remark

All Borel equivalence relations do not reduce to such a relation; also, there is no universal Borel equivalence relation. However there exists a universal analytic equivalence relation $E_{\infty}^{a n}$.

Example

The isometry relation between Polish metric spaces is $\sim_{b} E_{\infty}^{p o l}$ (Gao-Kechris); same for isometry between separable Banach spaces (M.).

Countable Borel equivalence relations

Theorem (Feldman-Moore)
Any countable Borel equivalence relation is induced by a Borel action of a countable (discrete) group G.

Countable Borel equivalence relations

Theorem (Feldman-Moore)
Any countable Borel equivalence relation is induced by a Borel action of a countable (discrete) group G.

Theorem
(Dougherty-Jackson-Kechris)
Let E be a countable Borel equivalence relation. Then $E \leq_{B} E_{0}$ iff E is induced by a Borel action of \mathbb{Z}.

Countable Borel equivalence relations

Theorem (Feldman-Moore)
Any countable Borel equivalence relation is induced by a Borel action of a countable (discrete) group G.

Theorem
(Dougherty-Jackson-Kechris)
Let E be a countable Borel equivalence relation. Then $E \leq_{B} E_{0}$ iff E is induced by a Borel action of \mathbb{Z}.
Improved to \mathbb{Z}^{n} (Weiss) then abelian (Gao-Jackson) then locally nilpotent (Seward-Schneider); open for amenable.

Countable Borel equivalence relations

Example

The relation \approx_{n} of isomorphism between torsion-free abelian groups of rank $\leq n$ is countable Borel.

Countable Borel equivalence relations

Example

The relation \approx_{n} of isomorphism between torsion-free abelian groups of rank $\leq n$ is countable Borel.

Theorem (Thomas)
For all n one has $\approx_{n}<B \approx_{n+1}$.

Countable Borel equivalence relations

Example

The relation \approx_{n} of isomorphism between torsion-free abelian groups of rank $\leq n$ is countable Borel.

Theorem (Thomas)

For all n one has $\approx_{n}<_{B} \approx_{n+1}$.
Theorem (Thomas)
The relation $\approx_{t f}$ is not universal for countable Borel equivalence relations.

Countable Borel equivalence relations

Theorem (Adams-Kechris)

There exists an order-preserving map from ($\mathcal{P}(N), \subseteq$) to countable Borel equivalence relations with \leq_{B}.

Countable Borel equivalence relations

> Theorem (Adams-Kechris)
> There exists an order-preserving map from ($\mathcal{P}(N), \subseteq$) to countable Borel equivalence relations with \leq_{B}.
> Not much is known about the partial ordering there (for instance, existence of relations with an immediate successor besides $={ }_{\mathbb{R}}$?).

Countable Borel equivalence relations

Theorem (Thomas)
There exist countable Borel equivalence relations which do not reduce to a relation induced by a free action of a countable group.

Question

Assume E is induced by a Borel action of S_{∞}. Is it true that E has either countably many or continuum many classes?

The Vaught conjecture(s)

Question

Assume E is induced by a Borel action of S_{∞}. Is it true that E has either countably many or continuum many classes?
The same question is open in general for Polish groups. Of course it is trivial in a universe where the continuum hypothesis holds, which is not the case of the following variant.

The Vaught conjecture(s)

Question

Assume E is induced by a Borel action of S_{∞}. Is it true that E has either countably many or continuum many classes?
The same question is open in general for Polish groups. Of course it is trivial in a universe where the continuum hypothesis holds, which is not the case of the following variant.

Question

Let E be induced by a Borel action of a Polish group. Is it true that either $E \leq_{B}=_{\mathbb{N}}$ or $=_{\mathbb{R}} \leq_{B} E$?

Groups, as men, shall be known by their actions

Question

Assume that G is a Polish group such that the universal equivalence relation induced by a Borel G-action is universal for relations induced by a Polish group action. Must G be a universal Polish group?

Groups, as men, shall be known by their actions

Question

Assume that G is a Polish group such that the universal equivalence relation induced by a Borel G-action is universal for relations induced by a Polish group action. Must G be a universal Polish group?

Note: already a very interesting (and probably very difficult) problem for the unitary group of a separable Hilbert space - how to prove that is universal equivalence relation is not universal for Polish group actions?

Thank you for your attention!

