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Framework

f : X → Y means that f is a function, dom(f ) = X and
Im(f ) ⊆ Y .
Unless explicitely specified, all spaces are Polish and
0-dimensional.
Unless explicitely specified, all functions are Borel, so
preimages of open sets are Borel.
A function is Baire class α if preimages of open sets are
Σ0
α+1.



The main definition: Solecki’s topological embeddability

X ,X ′,Y ,Y ′ topological spaces, f : X → Y and g : X ′ → Y ′

Definition
A topological embedding from f to g is a pair
(σ : X → X ′, τ : Im(f )→ Y ′) of continuous
embeddings such that τ ◦ f = g ◦ σ.

Note f v g when f embeds in g .
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Observations

Topological embedding between functions is a quasi-order,
that is, a transitive and reflexive relation.
If f embeds in g and g is Baire class α, so is f . Take indeed
(σ, τ) an embedding and note that f = τ−1gσ.
This is not the case if we look at embeddability between
graphs of functions, since there are functions of arbitrary
Baire class with closed graphs.

Definition
A set A is a basis for a class Γ of functions if every function in Γ
embeds some element of A.

Some classes of functions admit finite bases.



A basis for Borel functions

Note cX a constant function with domain a space X , IdX the
identity function on X .

Proposition
{cNN , IdNN} is a basis for all Borel functions on the Baire space.

Proof. Take f : NN → NN Borel. As f is continuous on a dense Π0
2

set, by passing to a subfunction we can suppose that f is
continuous.
If f is constant on an open set, then cNN embeds in f .
Otherwise f is injective on a perfect compact subset K of its
domain, so f |K is an embedding. Since K is perfect take an
embedding σ : NN → K , then (σ, f ◦ σ) is an embedding from IdNN

to f .



Bases for non-continuous functions
Name f0 : ω + 1→ 2 the characteristic function of ω, and
f1 : ω + 1→ ω an injection.

Fact
{f0, f1} is a basis for non-continuous functions.

Proof. Take xn → x with f (xn) 6→ f (x). Wlog (xn)n is either
constant, then f0 v f ; or it is injective and then f1 v f .

Note P the infinite product (f1)ω : (ω + 1)ω → ωω. A function is
σ-continuous is it can be covered by continuous functions with
Borel domains.

Theorem (Solecki, Pawlikovski-Sabok)
{P} is a basis for Borel non σ-continuous functions on NN.

This was the motivation for introducing topological embeddability
between functions.
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Basis for non Baire class 1 functions

Fix d : Q→ N any bijection.

Theorem (with Ben Miller)
{cQ, d , IdQ} is a basis for all functions on Q.

if f : X → NN and g : X ′ → NN have disjoint domains, note

f t g : X ∪ X ′ → NN

x 7→
{

0af (x) if x ∈ X
1ag(x)otherwise.

There is a 6-element basis for non Baire class 1 functions.

Theorem (with Ben Miller)
{ϕ t ψ | ϕ = cNN , IdNN ∧ψ = cQ, d , IdQ} is a basis for non Baire
class 1 functions on NN.



What about maximal functions?

There is a maximal continuous function!

Let π : NN×NN → NN be the projection on the second coordinate.
When f : NN → NN is continuous, IdNN ×f is an embedding.
So (IdNN ×f , Id) is an embedding from f in π.

Encouraging, unfortunately...

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)
No Baire class α admits a maximal element, for countable α 6= 0.

Idea: Use a generalisation of the Bourgain rank (due to
Elekes-Kiss-Vidnyanszky) and prove that embeddability respects
this rank.
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Is there always a finite basis?

Getting back to bases results, one can wonder if every
upward-closed class of functions admits a finite basis.
This is equivalent to being a well-quasi-order, or wqo.
A quasi-order is a wqo if every subset has minimal elements,
and there are no infinite antichains.

Is topological embeddability a wqo on Borel functions?

But once again:

Fact
There is an infinite antichain among continuous functions.



How bad does it fail?

Let’s measure the complexity of this quasi-order.
On the space of continuous functions X → Y we put the
compact-open topology, generated by

SX ,Y (K ,U) = {f ∈ C(X ,Y ) | f (K ) ⊆ U},

for K ⊆ X compact and U ⊆ Y open.
If X is compact Polish and Y is Polish, it is a Polish topology.

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)
If X is compact, Polish, 0-dimensional with infinitely many limit
points, and if Y is Polish, 0-dimensional and not discrete then
(C(X ,Y ),v) is a Σ1

1-complete quasi-order.



A dichotomy

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)
If X has infinitely many limit points, and if Y is not discrete then
(C(X ,Y ),v) is a Σ1

1-complete quasi-order.

So, in these cases, topological embeddability reduces every Borel
quasi-order, so it is as far from being a wqo as possible..
What about the other cases?
It turns out to be wqo!

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)
If X and Y are Polish 0-dimensional and X is compact then

either (C(X ,Y ),v) is a Σ1
1-complete quasi-order,

or it is wqo.



An infinite antichain

Given n ≥ 2 define a function fn:

fn : n × (ω + 1) −→ (n × ω) + 1 := (n × ω) ∪ {∞}
(i , ω) 7−→ ∞

(i , k) 7−→
{

(i , l) if k = 2l
(i + 1), l) if k = 2l + 1

where i + 1 is intended modulo n. Take now m < n.

n × (ω + 1) does not embed in m × (ω + 1), so fn 6v fm
the m-cycle does not embed injectively in the n-cycle, so
fm 6v fn.



A reduction from graph-embeddability: sketch idea
Following this line of idea, we call C the set of countable graphs on
ω with no isolated points, and ≺ the quasi-order of injective
homomorphism between them.

Proposition (with Yann Pequignot and Zoltan Vidnyanszky)
(C,≺) reduces continuously (through φ) to (C(ω2, ω + 1),v)

Now if Y is not discrete there is an embedding ιY : ω + 1→ Y .
And if X has infinitely many limit points one can build a specific
continuous surjection ρX : X → ω2 such that

Proposition (with Yann Pequignot and Zoltan Vidnyanszky)
G 7→ ιY ◦ φ(G) ◦ ρX is a continuous reduction from (C,≺) to
(C(X ,Y ),v).

We finally use Σ1
1-completeness of (C,≺), proven by Louveau and

Rosendal.
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Some questions

First, two obvious ones

Can we have a similar dichotomy outside 0-dimensional
spaces?
Which are the classes of functions admitting finite bases?

Observe then that if X ,X ′ have infinitely many limit points, and if
Y ,Y ′ are not discrete then our dichotomy yields Borel reductions
between C(X ,Y ) and C(X ′,Y ′) for free, but..

When is there a continuous reduction between C(X ,Y ) and
C(X ′,Y ′)?
If there is a continuous reduction, when is there a topological
embedding?

Thank you!
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