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Framework

m f: X — Y means that f is a function, dom(f) = X and
Im(f) C Y.

Unless explicitely specified, all spaces are Polish and
0-dimensional.

Unless explicitely specified, all functions are Borel, so
preimages of open sets are Borel.

m A function is Baire class « if preimages of open sets are

0
za+1.



The main definition: Solecki’s topological embeddability

X, X", Y,Y’ topological spaces, f : X =+ Y and g: X' — Y’

Definition

A topological embedding from f to g is a pair
(0 : X = X',7:Im(f) — Y’) of continuous
embeddings such that 7o f = goo.

Note f C g when f embeds in g.

g
_ >




Observations

m Topological embedding between functions is a quasi-order,
that is, a transitive and reflexive relation.

m If f embeds in g and g is Baire class «, so is f. Take indeed
(0, 7) an embedding and note that f = 7 1go.

m This is not the case if we look at embeddability between
graphs of functions, since there are functions of arbitrary
Baire class with closed graphs.

Definition
A set A is a basis for a class I of functions if every function in '
embeds some element of A.

Some classes of functions admit finite bases.



A basis for Borel functions

Note cx a constant function with domain a space X, Idx the
identity function on X.

Proposition
{cnw, Idy } is a basis for all Borel functions on the Baire space. J

Proof. Take f : NN — NN Borel. As f is continuous on a dense M3
set, by passing to a subfunction we can suppose that f is
continuous.

If f is constant on an open set, then ¢y embeds in f.

Otherwise f is injective on a perfect compact subset K of its
domain, so f|k is an embedding. Since K is perfect take an
embedding o : NY¥ — K, then (o, f 0 ¢) is an embedding from Idyx
to f. O]



Bases for non-continuous functions

Name fy : w + 1 — 2 the characteristic function of w, and
fi :w+1— w an injection.

Fact

{fo, i} is a basis for non-continuous functions.

Proof. Take x, — x with f(x,) 4 f(x). Wlog (x,), is either
constant, then fy C f; or it is injective and then f; C f. O



Bases for non-continuous functions

Name fy : w + 1 — 2 the characteristic function of w, and
fi :w+1— w an injection.

Fact

{fo, i} is a basis for non-continuous functions.

Proof. Take x, — x with f(x,) 4 f(x). Wlog (xp), is either
constant, then fy C f; or it is injective and then f; C f. O

Note P the infinite product (A)“ : (w + 1) — w®. A function is
o-continuous is it can be covered by continuous functions with
Borel domains.

Theorem (Solecki, Pawlikovski-Sabok)

{P} is a basis for Borel non o-continuous functions on NN,

This was the motivation for introducing topological embeddability
between functions.



Basis for non Baire class 1 functions

Fix d : Q — N any bijection.

Theorem (with Ben Miller)
{cg, d,dg} is a basis for all functions on Q.

if f: X — NN and g: X" — NN have disjoint domains, note

fug:XuXx — NV
0~ f(x) if x € X
X
1" g(x)otherwise.

There is a 6-element basis for non Baire class 1 functions.

Theorem (with Ben Miller)

{eUv | ¢ = qy, ldyw A = ¢, d, Idg} is a basis for non Baire
class 1 functions on NN,




What about maximal functions?

There is a maximal continuous function! J

Let 7 : NN x NN — NN be the projection on the second coordinate.
When f : NY¥ — NN is continuous, Idyy X f is an embedding.
So (ldyy xf,1d) is an embedding from f in .



What about maximal functions?

There is a maximal continuous function! J

Let 7 : NN x NN — NN be the projection on the second coordinate.
When f : NY¥ — NN is continuous, Idyy X f is an embedding.
So (ldyy xf,1d) is an embedding from f in .

Encouraging, unfortunately...

Theorem (with Yann Pequignot and Zoltan Vidnyanszky) J

No Baire class a admits a maximal element, for countable a: # 0.

Idea: Use a generalisation of the Bourgain rank (due to
Elekes-Kiss-Vidnyanszky) and prove that embeddability respects
this rank.



Is there always a finite basis?

m Getting back to bases results, one can wonder if every
upward-closed class of functions admits a finite basis.

m This is equivalent to being a well-quasi-order, or wqo.

m A quasi-order is a wqo if every subset has minimal elements,
and there are no infinite antichains.

Is topological embeddability a wgo on Borel functions?

But once again:

Fact
There is an infinite antichain among continuous functions.




How bad does it fail?

Let's measure the complexity of this quasi-order.
On the space of continuous functions X — Y we put the
compact-open topology, generated by

Sx,v(K,U) = {f € C(X,Y) | f(K) € U},

for K € X compact and U C Y open.
If X is compact Polish and Y is Polish, it is a Polish topology.

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)

If X is compact, Polish, 0-dimensional with infinitely many limit
points, and if Y is Polish, O-dimensional and not discrete then
(C(X,Y),C) is a X}-complete quasi-order.




A dichotomy

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)

If X has infinitely many limit points, and if Y is not discrete then
(C(X,Y),C) is a X}-complete quasi-order.

So, in these cases, topological embeddability reduces every Borel
quasi-order, so it is as far from being a wqo as possible..

What about the other cases?

It turns out to be wqo!

Theorem (with Yann Pequignot and Zoltan Vidnyanszky)
If X and Y are Polish 0-dimensional and X is compact then
m either (C(X, Y),C) is a Xi-complete quasi-order,

m or it is wqo.




An infinite antichain
Given n > 2 define a function f,:

fonx(w+1) — (nxw)+1:=(nxw)U{oco}
(i,w) — o0

(k) s {(i,/) if k=2l
’ (i+1),1) ifk=2/+1

where i + 1 is intended modulo n. Take now m < n.

m n X (w4 1) does not embed in m x (w+ 1), so f, £ fp,

m the m-cycle does not embed injectively in the n-cycle, so
fm £ 1.



A reduction from graph-embeddability: sketch idea

Following this line of idea, we call C the set of countable graphs on
w with no isolated points, and < the quasi-order of injective
homomorphism between them.

Proposition (with Yann Pequignot and Zoltan Vidnyanszky)
(C, <) reduces continuously (through ¢) to (C(w?,w +1),C) J
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Following this line of idea, we call C the set of countable graphs on
w with no isolated points, and < the quasi-order of injective
homomorphism between them.

Proposition (with Yann Pequignot and Zoltan Vidnyanszky)
(C, <) reduces continuously (through ¢) to (C(w?,w +1),C) J

Now if Y is not discrete there is an embedding ty :w+1— Y.
And if X has infinitely many limit points one can build a specific
continuous surjection px : X — w? such that

Proposition (with Yann Pequignot and Zoltan Vidnyanszky)

G — 1y o ¢(G) o px is a continuous reduction from (C, <) to
(C(X,Y),D).

We finally use X1-completeness of (C, <), proven by Louveau and
Rosendal.



Some questions

First, two obvious ones

m Can we have a similar dichotomy outside 0-dimensional
spaces?

m Which are the classes of functions admitting finite bases?
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Thank you!



