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Classification problems

A classification problem consists of an equivalence relation E on some
set X of mathematical objects;

a solution to such a problem is an
assignment of complete invariants, i.e. a pair (I,') where I is a set
(whose elements are called invariants) and ' : X ! I is a map assigning to
each object in X an invariant from I so that for all x, y 2 X

x E y () '(x) = '(y).

Examples

Classification of... ... up to ...

n-square complex matrices similarity
countable graphs isomorphism

complete metric spaces isometry
compact metrizable spaces homeomorphism
separable Banach spaces linear isometry (or isomorphism)

... ...
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Classification problems

Any classification problem (X,E) has a solution:

set I = X/E and
'(x) = [x]E ... done! To avoid cheating, we require that

Both I and ' are reasonably “concrete” and “simple”.

For example, when X carries a nice Borel structure (e.g. a Borel structure
induced by a Polish topology), then a quite concrete solution would be a
pair (I,') where I = R (equivalently, I is any Polish space) and ' is a
Borel function. When this happens we say that the elements of X are
concretely classifiable (up to E), or that the classification problem
(X,E) is smooth.

Example
n-square complex matrices are concretely classifiable up to similarity: a
solution for this classification problem is the map assigning to each such
matrix its canonical Jordan form.
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Classification problems

When we lack such concrete invariants, we might still be satisfied with
weaker classifications using as invariants:

concrete invariants up to countably many mistakes (e.g. reals up to
rational translations);
countable structures (graphs, linear orders, trees, and so on) up to
isomorphism;
orbits of some continuous action of a Polish group;
. . .

Now invariants are equivalence classes with respect to some equivalence
relation: what does it mean that the assignment map ' is
“concrete/simple” in this broader context?
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Borel reducibility

Definition
Let E,F be equivalence relations on standard Borel spaces X,Y . Then
E B F (“E is Borel reducible to F ”) iff there is a Borel map f : X ! Y
such that for all x, y 2 X

x E y () f(x) F f(y).

Equivalently, E B F if and only if there is an injection from X/E into
Y/F admitting a Borel lifting.

Definition
E ⇠B F (“E and F are Borel bi-reducible”) iff E B F B E.

Equivalently, E ⇠B F if and only if there are injections from each quotient
space to the other one, both admitting Borel liftings.
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Borel reducibility

Remark
Each quotient space X/E may be naturally equipped with a quotient

Borel structure by stipulating that A ✓ X/E is Borel if and only ifS
A = {x 2 X | [x]E 2 A} is a Borel subset of X.

Then E B F implies that there is a Borel injection f between X/E to
Y/F , but it is stronger than this, because it requires f to admit a Borel
lifting ˆf : X ! Y . Indeed, the two notions coincide in presence of suitable
selection/uniformization principles for Y/F .

Similar considerations hold for Borel bi-reducibility (which implies, in
particular, that the quotient spaces are Borel bi-embeddable).
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Borel reducibility

There are at least two possible interpretations of Borel reducibility
connected to classification problems.

1 A witness f of E B F is a sufficiently simple assignment of complete
invariants to the classification problem (X,E), where the invariants
are the elements of I = Y/F .

2 If E B F , then the classification problem (X,E) is not more
complicated than the classification problem (Y, F ): any solution to the
latter can be transformed, via composition with a Borel reduction f of
E to F , into a solution to the former. Thus E ⇠B F means that the
two classification problems are equally complex.

Let (X,E) be a classification problem.
E B F with F fairly simple  classification results

F B E with F very complicate  anti-classification results
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Some weaknesses of B and ⇠B

Borel reducibility is very useful in tackling classification problems, but in
some cases it may be not fully satisfactory.

Objection 1
Borel functions can be quite complicated! So it may be more natural to
consider e.g. continuous functions.

An answer
This is not always possible because:

often the space of objects X carries a natural standard Borel
structure, but no preferred Polish topology (e.g. the space X = F (Z)

of closed subsets of a Polish space Z);
there are solutions to classification problems commonly accepted in
mathematics which are not given by continuous functions: this would
lead to the problem of establishing a generally accepted threshold for
the notion of “simplicity” (sorites paradox).
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Some weaknesses of B and ⇠B

Objection 2
One should be able to recognize in a “simple” (= Borel) way which are the
“true” invariants, i.e. which invariants are actually used in the solution to
the classification problem (optimal space of invariants).

For example, we know how to recognize the invariants actually used in the
classification of all complex n-matrices up to similarity: they are all
matrices in canonical Jordan form!

In contrast, when we merely know that f witnesses E B F , we just get
that the F -saturation of the range of f , i.e. the set

{y 2 Y | y F f(x) for some x 2 X},

is analytic but not necessarily Borel.
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Some weaknesses of B and ⇠B

Objection 3
Furthermore, since invariants should represent, in a sense, the
E-equivalence classes, it would be desiderable to be able to reconstruct (in
a simple way) from such invariants the objects to which they are assigned
(up to E-equivalence).

In other words, given a solution ' to a classification problem (X,E), one
would like to be able to find a sort of (Borel) left-inverse up to E of '.

This requirement is so natural that it was already considered by
H. Friedman and Stanley in the first paper on Borel reducibility from 1989,
where it is called Borel recovery property.
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Some weaknesses of B and ⇠B

Objection 4
In some concrete cases, B and ⇠B do not correspond to the notions that
are considered the “right” ones in the given specific context.

Crucial example from the Sixties
Given a countable group G, consider the Polish space Irr(G) of all
irreducible unitary representations of G equipped with the relation ⇡G of
unitary equivalence. The unitary dual bG of G is the quotient Irr(G)/ ⇡G

equipped with its quotient Borel structure (= Mackey Borel structure). The
natural notion of “identification” for unitary duals (hence for the unitary
equivalence relations) is the following: bG and bH are Borel isomorphic if
there is a bijection ' : bX ! bY s.t. both ' and '�1 admit Borel liftings.
This is apparently finer than Borel bi-reducibility: indeed, ⇡G ⇠B ⇡H

yields only two injections ' : bG ! bH and  :

bH ! bG admitting Borel
liftings, but it does not imply in general that  = '�1.
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Faithful (or FS-)Borel reducibility

To overcome Objection 2 (“recognize the invariants employed in a Borel
manner”), one could just require that the F -saturation of the range of the
reduction is Borel.

However, already in 1989 Friedman and Stanley
proposed the following more natural strengthening.

Definition
E is faithfully Borel reducible (or FS-reducible) to F (E fB F ) if
there is a witness f of E B F such that for every Borel E-saturated
A ✓ X, the F -saturation of f(A) is Borel.

Equivalently, E fB F iff there is a Borel isomorphism f between X/E
and a Borel subset of Y/F (i.e. a Borel embedding) admitting a Borel
lifting.

From fB, we can naturally define the induced equivalence relation ⇠fB

of faithful Borel bi-reducibility by setting

E ⇠fB F () E fB F fB E.
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Faithful (or FS-)Borel reducibility

Faithful Borel reducibility is strictly finer than B, and in fact it yields a
better analysis of the complexity of certain classification problems.

Theorem (H. Friedman-Stanley, 1989; Gao, 1998)
Let ⇠

=GRAPH, ⇠
=LO, and ⇠

=TREE denote the isomorphism relations on,
respectively, countable graphs, countable linear orders, and countable trees.
Then

⇠
=GRAPH ⇠B

⇠
=LO ⇠B

⇠
=TREE

but
⇠
=GRAPH ⇥fB

⇠
=LO and ⇠

=GRAPH ⇥fB
⇠
=TREE.
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Faithful (or FS-)Borel reducibility

The reducibility fB may be interpreted as a (quite weak) notion of
L!1!-interpretability.

Given a first-order theory (or, more generally, an
L!1!-sentence) ', let Mod(') be the standard Borel space of countable
models of ', and ⇠

=' be the relation of isomorphism on Mod(').

Given two first order theories T, T 0, a witness f of ⇠
=T fB

⇠
=T 0 yields a

map ◆ from the set of L!1!-sentences to itself such that:
' `T  if and only if ◆(') `T 0 ◆( );
for every A 2 Mod(T ) and every L!1!-sentence ',

A |= ' () f(A) |= ◆(').

Under this interpretation, Gao’s result may be seen as a proof of the fact
that the theory of (countable) graphs cannot be interpreted in the theory of
(countable) linear orders or in the theory of (countable) trees.
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Faithful (or FS-)Borel reducibility

Definition
E is faithfully Borel reducible (or FS-reducible) to F (E fB F ) if
there is a witness f of E B F such that for every Borel E-saturated
A ✓ X, the F -saturation of f(A) is Borel.

Equivalently, E fB F iff there is a Borel isomorphism f between X/E
and a Borel subset of Y/F admitting a Borel lifting.

The reducibility fB fully overcomes Objection 2: indeed, when E fB F
the invariants actually used in the solution to the classification problem
(X,E) can be recognized in a Borel way.

However, even when E fB F it may be impossible to recover an object
from the invariant, i.e. the reducibility may fail to have the Borel recovery

property. This happens because the requirement in the (equivalent
reformulation of the) definition is asymmetric: we demand that f has a
Borel lifting, but we don’t ask the same for f�1.
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Classwise Borel isomorphism and classwise Borel embedding

Recall that ⇠B corresponds, roughly speaking, to Borel bi-embeddability between

the quotient spaces.

Definition
E and F are classwise Borel isomorphic (E 'cB F ) if there is a Borel

bijection f : X/E ! Y/F such that both f and f�1 admit Borel liftings.

E classwise Borel embeds into F (E vcB F ) if there is a Borel
F -saturated B ✓ Y such that E 'cB F � B.

Equivalently, E vcB F if and only if there is a Borel isomorphism f
between X/E and a Borel subset of Y/F such that both f and f�1

admit

Borel liftings.

It is not necessary to define classwise Borel bi-embeddability:

Schröder-Bernstein theorem for reducibilities (M.)
If E vcB F and F vcB E, then E 'cB F .
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Some features of vcB and 'cB

vcB fully overcomes both Objection 2 and Objection 3 when used as a
classification tool: we can recognize in a Borel way the invariants used
in the classification, and it has the Borel recovery property.

E 'cB F means that E and F are the same equivalence relation (we
can go back and forth between the two relations without loosing any
information), while E vcB F means that E is contained in F . Indeed,
E vcB F if and only if F ⇠

=cB E � F 0 for some F 0 (here � denotes
the operation of disjoint union between equivalence relations).
All “natural” classes of analytic equivalence relations (orbit,
isomorphisms, countable Borel, treeable, hyperfinite, ...) are downward
closed with respect to vcB (up to classwise Borel isomorphism).
vcB is the only reducibility admitting a “Schröder-Bernstein theorem”.
If E vcB F , then E fB F . Thus also vcB is strictly finer than B:
indeed ⇠

=GRAPH ⇠B
⇠
=LO but ⇠

=GRAPH 6vcB
⇠
=LO (and the same for

⇠
=TREE).
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A comparison in the Borel realm

Theorem (Friedman-M.)
There is E ⇠B id(R) such that E 6vcB id(R) (hence also E 6'cB id(R)).

Given a Borel C ✓ R2, denote by FC the equivalence relation on C defined
by (x, y) FC (x0, y0) () x = x0.

Proof.
Let C ✓ R2 be a Borel set with proj(C) = R and no Borel uniformization
(i.e. such that there is no Borel C 0 ✓ C with 8x 9!y ((x, y) 2 C 0

)).
Set E = id(R)� FC .
• id(R) B E is clear. If f+, f� are homeomorphisms between R and,
respectively, R>0 and R<0, then f� [ (f+ � proj) witnesses E B id(R).
• Suppose that B ✓ R is a Borel set such that E 'cB id(B), and let
f : R t C ! B and g : B ! R t C be witnesses of this. Set A = g�1

(C):
then g(A) is a Borel uniformization of C, a contradiction.
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When differences disappear...

Recall that: E vcB F implies E fB F , which in turn implies E B F .

Theorem (

Let E be an orbit equivalence relation and F be a Borel equivalence
relation. If E B F , then E fB F , and in fact also E vcB F .

Combining this with the Schröder-Bernstein theorem for vcB we get:

Corollary
Let E,F be Borel orbit equivalence relations. Then
E B F () E vcB F , and also E ⇠B F () E 'cB F .

Remark: By the previous counterexample, this cannot be extended to
arbitrary Borel equivalence relations (this answers a question of Gao from
2001).
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An application

Let’s go back to the unitary equivalence relation ⇡G on the space of
irreducible representations of a countable group G, and to the associated
unitary dual bG.

By definition, bG and bH are Borel isomorphic iff
⇡G 'cB ⇡H . Therefore

Corollary

Let G,H be countable groups. Then bG and bH are Borel isomorphic if and
only if ⇡G ⇠B ⇡H .

Thus, in the end, a strengthening of Borel reducibility allowed us to
reconcile ⇠B with the notion of Borel isomorphism between unitary duals
(Objection 4).

Remark: Recently, this simple observation allowed Simon Thomas to use
Borel reducibility to obtain beautiful results pushing further the analysis of
unitary duals of non-Abelian-by-finite countable groups.
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Structural consequences

Kechris and Macdonald (implicitly) observed that the use of vcB yields to
interesting structural properties for equivalence relations under B.

Theorem (Kechris-Macdonald, 2016)
Let E be the collection of all countable Borel equivalence relations.

1

(Existence of least upper bounds) Any increasing sequence
F0 B F1 B . . . in E has a least upper bound in E (w.r.t. B).

2

(Interpolation) If S, T ✓ E are countable sets such that
8E 2 S 8F 2 T (E B F ), then there is G 2 E such that
8E 2 S 8F 2 T (E B G B F ).

3

(Dichotomy for integer multiples) For any E 2 E , exactly one of the
following holds:

1 E <B E � E <B E � E � E <B . . .;
2 E ⇠B E � E ⇠B E � E � E ⇠B . . ..

Moreover, the same is true if E = all Borel orbit equivalence relation, or
E = all treeable countable Borel equivalence relations, and so on.
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Structural consequences

The proof relies exactly on the fact that B and vcB coincide on Borel
orbit equivalence relations.

This allows one to observe that (E ,�,
L

n2!)
is a cardinal algebra (where � and

L
n2! denote the operations of disjoint

union and countable disjoint union), and the properties of such cardinal
algebras isolated by Tarski in the Fourties give the above results.

Remark: This use of cardinality algebras mathematically justifies a further
interpretation of Borel reducibility, namely

E B F  the Borel cardinality of X/E is less than or equal to
the Borel cardinality of Y/F .
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Remark: This use of cardinality algebras mathematically justifies a further
interpretation of Borel reducibility, namely

E B F  the Borel cardinality of X/E is less than or equal to
the Borel cardinality of Y/F .
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Beyond Borel orbit equivalence relations

We observed that if E,F are Borel orbit equivalence relations then
E B F () E vcB F .

What about other kinds of equivalence relations?

Crucial lemma (M.)
Let E be an analytic equivalence relation on X and F be an orbit
equivalence relation on Y . If E B F then there are a comeager
E-saturated Borel set C ✓ X and an F -saturated Borel set A ✓ Y such
that F � A is a Borel equivalence relation and E � C B F � A (so that
E � C is Borel as well and E � C vcB F ).
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An observation

Let E be a collection of orbit equivalence relations.

Then E is essentially

in E if there is F 2 E such that E B F .

Example
E is essentially countable Borel if it is Borel reducible to a countable Borel
equivalence relation. Hjorth showed that there is such an E which is not
Borel bi-reducible with any countable Borel equivalence relation.
(In particular, E 6⇠B F for any orbit equivalence relation F .)

An equivalence relation is generically in E if there is a comeager
E-saturated C ✓ X such that E � C 2 E .

Observation
Let E be any of the following collections: all orbit equivalence relations, all
isomorphism relations, all countable Borel equivalence relations, all treeable
Borel equivalence relations, ...
If F is essentially in E , then F is generically in E .
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Other (trivial?) observations

Proposition
Let E be an essentially orbit equivalence relation on a Polish space X. If
all countable unions of E-equivalence classes are not comeager, then
id(R) B E.

Compare this with

Theorem (Mycielski)
Let E be an analytic equivalence relation on a Polish space X. If all
(countable unions of) E-equivalence classes are meager, then id(R) B E.
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Other (trivial?) observations

Proposition
Let E be an essentially orbit equivalence relation. Then either E is
generically smooth, or E0 B E.

Compare this with

Theorem (Harrington-Kechris-Louveau)
Let E be a Borel equivalence relation. Then either E is smooth, or
E0 B E.
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Beyond Borel orbit eq. rel. (id(R) and E
0

)

Theorem (M.)
Let E be either id(R) or E0, and F be an arbitrary orbit equivalence

relation. Then E B F () E vcB F .

This follows from the Crucial lemma and the fact that E B E � C for any
comeager E-saturated C (use the HKL theorem in the case of E0).

Corollary (M.)
Let E 2 {id(R), E0}, and F be an orbit equivalence relation. TFAE:

1 E B F ;
2 E vcB F ;
3 F ⇠B E � F 0 for some analytic equivalence relation F 0;
4 F ⇠B E � F . (“F absorbs E”)

In parts 3 and 4 we may equivalently replace ⇠B with 'cB.
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A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;

there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set.

Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements,

and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
For every orbit equivalence relation E satisfying id(R) B E there are
E1, E2 such that both E1 ⇠B E and E2 ⇠B E, and moreover:

E1 fB E while E2 ⇥fB E;
there is no orbit eq. rel. in which E1, E2 classwise Borel embed.

Proof.
Let Ci ✓ R2 (for i = 1, 2) be Borel sets with no Borel uniformization and
such that proj(C1) is Borel, while proj(C2) is a proper analytic set. Set
Ei = E � FCi .

Thus in the ⇠B-class of an E as above there are always fB-inequivalent
elements, and in its ⇠fB-class there are vcB-inequivalent elements.

The reducibilities B, fB, and vcB are all distinct.

L. Motto Ros (Turin, Italy) When Borel reducibility is not enough... Lausanne, 29.5.2017 28 / 34



A comparison between the various reducibilities

Theorem (M.)
There is a ⇠B-class which contains at least two vcB-incomparable
elements.

Proof.
Consider ⇠

=LO and let F ⇠B
⇠
=LO be such that F fB

⇠
=LO but there is no

orbit equivalence relation in which F classwise Borel embeds. Then
⇠
=GRAPHS and F are Borel bi-reducible but vcB-incomparable.

Question
Are there ⇠B-classes containing large vcB-antichains, or long (ascending
or descending) vcB-chains?

Skip
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Beyond Borel orbit eq. rel. (E
1

and �-compact eq. rel.)

Proposition
Let E be an analytic equivalence relation with �-compact classes and F be
a Borel equivalence relation. Then E B F () E vcB F .

The above theorem applies e.g. to all �-compact equivalence relations, but
there are also Borel equivalence relations with �-compact classes which are
of arbitrarily high Borel rank (hence non-�-compact). Moreover, such an E
may fail to be an (essentially) orbit equivalence relation — set e.g. E = E1.

Corollary (M.)
Let E,F be �-compact equivalence relations. Then

E B F () E vcB F , hence also E ⇠B F () E 'cB F .

Let F be any Borel equivalence relation. Then

E1 B F () E1 vcB F () F ⇠B E1 � F 0 () F ⇠B E1 � F .

Skip
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Beyond Borel orbit equivalence relations

Definition (Kechris)
A Borel equivalence relation E is idealistic if there is a map assigning to
each C 2 X/E a nontrivial �-ideal IC on C such that C 7! IC is Borel in
the following sense: For each Borel A ✓ X2, the set AI ✓ X is Borel,
where x 2 AI () {y 2 [x]E | (x, y) 2 A} 2 I[x]E .

Idealistic equivalence relations include all Borel orbit equivalence relations.

Theorem (Kechris-Macdonald, 2016)
Let E be idealistic and F be Borel. If E B F , then E vcB F .

Corollary
If E,F are Borel idealistic equivalence relations, then

E B F () E vcB F and E ⇠B F () E 'cB F .

Skip
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Beyond Borel orbit equivalence relations

Proposition (folklore)
⇠
=' vcB

⇠
=GRAPH for every L!1!-sentence '.

Proposition (Gao, 2011)
Let ' be an L!1!-sentence such that ⇠

=' is Borel. Then

⇠
=' fB

⇠
=LO and ⇠

=' fB
⇠
=TREE.

Remark 1: This cannot be extended to arbitrary ': the statement fails
e.g. when ' axiomatizes countable graphs.

Remark 2: It is plausible that in the last result one can replace fB with
vcB.
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Conclusions

Speaking about variants of Borel reducibility, H. Friedman and Stanley
wrote in their paper from 1989:

We shall rarely work with these notions in this paper, as we

conjecture that the resulting notions [of reducibility] are

extremely sparse and that there are few positive results to be had.

Hopefully, we demonstrated that their intuition was wrong: when
considering (anti-)classification results, strengthenings of Borel reducibility
can be even more natural and useful than B itself. However, nowadays
there are too many such variants, and we are far from being able to isolate
an “optimal” reducibility notion.

A systematic study comparing all these various reducibilities could turn out
to be useful to shed light on some phenomena in the theory of Borel
reducibility which remain invisible to a more classical approach.
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The end

Thank you for your attention!
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