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Introduction to quandles

An algebraic structure associated with knots

Take an oriented knot diagram. We define an algebraic structure with two binary
relations ∗ and ∗′, a generator for each arc of the diagram, and a relation for each
crossing, as follows:
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Introduction to quandles

The Reidemeister moves
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Introduction to quandles

Respecting the Reidemeister moves
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Introduction to quandles

Definitions

A quandle is a set with a binary operation ∗ such that

1 ∀a∀b∀c[a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)]

2 for all a, the map b 7→ a ∗ b is a bijection

3 ∀a[a ∗ a = a].

Equivalently, for every a the operation of left multiplication by a (i.e. b 7→ a ∗ b) is
an automorphism with fixed point a.

Example

Any group with the operation of conjugation (a ∗ b = aba−1) is a quandle.
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Introduction to quandles

Quandles as knot invariants

Joyce (’82)

The knot quandle is a complete invariant

i.e. two (tame) knots are equivalent if and only if their associated quandles
are isomorphic.

But
is it a good invariant?

Heuristically, it seemed hard to determine whether two quandles are isomorphic.

Gist of Theorem (A.B.-T., S. Miller)

Isomorphism of general countable quandles is as complex as possible.
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Classes of structures

Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures, such as of
graphs, groups, or indeed quandles.

Let L be a countable set of relation symbols. We consider the set Mod(L) of
L-structures with underlying set N. We can view such a structure as being
encoded by an element of ∏

R∈L

2Na(R)

where a(R) is the arity of R.

Example:

A directed graph G on vertex set N is determined by a function from N2 to 2,
taking (m, n) to 1 if there is an edge from m to n in G , and to 0 if not.
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Classes of structures

Identifying Na with N for any finite a, we have structures encoded by elements of
the Cantor space 2N.

Topology:

Recall that a subbase for the topology on 2N is given by sets with a single “bit” of
information determined.

Giving Mod(L) the corresponding topology, we have that an open subbase set is
given by a single bit of information. For example, if LGr is the vocabulary for
directed graphs (with a single binary relation),

{G ∈Mod(LGr ) | G doesn’t have an edge from 3 to 177}

is a subbase set.
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Classes of structures

Functions

If L contains (k-ary) function symbols, they can be represented as (k + 1-ary)
relations.

For a k + 1-ary relation F to represent a function, it must satisfy

∀m1 · · · ∀mk∀n1∀n2 6= n1¬
(
F (m1, . . . ,mk , n1) ∧ F (m1, . . . ,mk , n2)

)
and

∀m1 · · · ∀mk∃n(F (m1, . . . ,mk , n)).

These sentences define a Gδ (Π2) subset, so the set so defined is a Polish space
with the induced topology (that is, it can be endowed with a a complete metric
that gives the same topology as the induced topology).

Axioms
Similarly, any class of structures for the vocabulary L given by countably many
first order axioms Th forms a Borel subspace Mod(Th) of Mod(L).
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Classes of structures

Isomorphisms

An isomorphism of two structures in Mod(Th) is a bijection from N to N
respecting the relations and functions of the structures.

Viewed the other way:

For any bijection g from N to N and any M in Mod(L), there is an N in Mod(L)
such that g is an isomorphism from M to L: define

N � R(n1, . . . , nk) ←→ M � R(g−1(n1), . . . , g−1(nk))

i.e.
N � R(g(m1), . . . , g(mk)) ←→ M � R(m1, . . . ,mk)

Defining g · M to be this N , we have a group action of the group S∞ (of
permutations of N) on Mod(Th) — the logic action.
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Classes of structures

Borel completeness

Definition

We say a first order class C = Mod(ThC) of countable L-structures for some L is
Borel complete if the isomorphism relation of every other such class Borel reduces
to its isomorphism relation: for every other first order class of countable structures
D = Mod(ThD),

∼=D ≤B
∼=C .

Examples

Graphs

Trees

Linear Orders

Groups
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Theorem and Proof

Theorem (A.B.-T., S. Miller)

The class of quandles is Borel complete.

Proof

We construct a mapping Q taking (directed, irreflexive) graphs to quandles such
that

Γ ∼=Graphs Γ′ iff Q(Γ) ∼=Quandles Q(Γ′).

It’s a hands-on construction, so inevitably will be Borel (in fact it’s continuous).

Since the class of graphs is known to be Borel complete, this implies that the class
of quandles is Borel complete.
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Theorem and Proof

How to build a quandle?

Need to choose an automorphism b 7→ a ∗ b for every element a.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it’s not very
interesting.

The next most trivial possibility

Some other bijection τ . But we require a ∗ a = a for every a.

We could decree that a ∗ a = a, but then to preserve bijection, we should probably
also decree that a′ ∗ a = a for every a′ in the τ orbit of a. Or even in some
collection of orbits.
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Theorem and Proof

Dynamical quandles

Introduced by Kamada (2010).

Let X be a set and τ a bijection X → X .

Let Ω denote the set of τ -orbits [x ]τ of X ,
and let θ : Ω→ P(Ω) be a function such that for all x in X , [x ]τ ∈ θ([x ]τ ).

Then the operation ∗ on X given by

x ∗ y =

{
y if [x ]τ ∈ θ([y ]τ )

τy if [x ]τ /∈ θ([y ]τ )

makes (X , ∗) a quandle, the dynamical quandle derived from (X , τ) with respect
to θ.
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Theorem and Proof

Given a graph Γ we encode Γ into the θ of a dynamical quandle.

Let Γ = (V ,E ) be an irreflexive directed graph. We take

X = V × 2

τ flipping the second coordinate: τ(v , 0) = (v , 1), τ(v , 1) = (v , 0).

Identify [(v , i)]τ with v , so Ω is essentially V .

θ : V → P(V ) is defined by

u ∈ θ(v) ←→ u E v ∨ u = v .

Then we define Q(Γ) to be the dynamical quandle derived from (X , τ) with
respect to θ.
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Theorem and Proof

Quandle definition

A quandle is a set with a binary operation ∗ such that

1 ∀a∀b∀c[a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)]

2 for all a and c there is a unique b such that a ∗ b = c

3 ∀a[a ∗ a = a]

4 ∀a∀b[a ∗ (a ∗ b) = b]

Equivalently, for every a the operation of left multiplication by a (b 7→ a ∗ b) is an
automorphism with fixed point a.
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Theorem and Proof

Kei definition
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Theorem and Proof

Clearly if Γ ∼= Γ′ then Q(Γ) ∼= Q(Γ′).

Interesting part: if there is an isomorphism f : Q(Γ)→ Q(Γ′), why must there be
an isomorphism Γ→ Γ′?

Our isomorphism f need not arise from a graph isomorphism. Nevertheless, given
f can we construct an isomorphism ϕ : Γ→ Γ?
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Theorem and Proof

What can f do?

Consider any (v , j) ∈ Q(Γ).

Case 1

There is some (u, i) ∈ Q(Γ) such that (u, i) ∗ (v , j) 6= (v , j).

Then the “twinning” of (v , j) with (v , 1− j) is witnessed by the action of (u, i).
So the action of f (u, i) on f (v , j) is nontrivial, and takes f (v , j) it to its twin. So
the first component of f (v , j) is independent of j ∈ {0, 1}, and we take this to be
ϕ(v).
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Theorem and Proof

What can f do?

Case 2

Every element of Q(Γ) acts trivially on (v , j).

Then f need not respect the “twinning” structure. But we can show that f only
mixes around (v , j) and (v , 1− j) within a set of elements corresponding to a
clique of vertices all with the same other edges in and out, so we can choose an
arbitrary bijection for ϕ on that clique.

These definitions of ϕ(v) combine to produce a graph isomorphism from Γ to Γ′.
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Theorem and Proof

Open question

Is there an encoding map Q : Graphs→ Quandles that is functorial?

Our map Q fails this badly, because graph homomorphisms need not preserve
non-edges.
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