# Borel completeness of a complete knot invariant 

Andrew Brooke-Taylor

University of Leeds
Lausanne, 29 May 2017

## An algebraic structure associated with knots

Take an oriented knot diagram. We define an algebraic structure with two binary relations $*$ and $*^{\prime}$, a generator for each arc of the diagram, and a relation for each crossing, as follows:

$a * b=c$

$a *^{\prime} b=d$

$$
\begin{aligned}
& x: y \\
& x \\
& x
\end{aligned}
$$

## Respecting the Reidemeister moves



a $a *^{\prime}(a * b) \quad b *\left(b *^{\prime} a\right) b$


$a * a$


## Definitions

A quandle is a set with a binary operation $*$ such that
(1) $\forall a \forall b \forall c[a *(b * c)=(a * b) *(a * c)]$
(2) for all $a$, the map $b \mapsto a * b$ is a bijection
(3) $\forall a[a * a=a]$.

Equivalently, for every a the operation of left multiplication by $a$ (i.e. $b \mapsto a * b$ ) is an automorphism with fixed point $a$.

## Definitions

A quandle is a set with a binary operation $*$ such that
(1) $\forall a \forall b \forall c[a *(b * c)=(a * b) *(a * c)]$
(2) for all $a$, the map $b \mapsto a * b$ is a bijection
(3) $\forall a[a * a=a]$.

Equivalently, for every $a$ the operation of left multiplication by $a$ (i.e. $b \mapsto a * b$ ) is an automorphism with fixed point $a$.

## Example

Any group with the operation of conjugation $\left(a * b=a b a^{-1}\right)$ is a quandle.

## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant


## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant i.e. two (tame) knots are equivalent if and only if their associated quandles are isomorphic.


## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant i.e. two (tame) knots are equivalent if and only if their associated quandles are isomorphic.

But

## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant i.e. two (tame) knots are equivalent if and only if their associated quandles are isomorphic.


## But

is it a good invariant?

## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant i.e. two (tame) knots are equivalent if and only if their associated quandles are isomorphic.


## But

is it a good invariant?

Heuristically, it seemed hard to determine whether two quandles are isomorphic.

## Quandles as knot invariants

Joyce ('82)

- The knot quandle is a complete invariant i.e. two (tame) knots are equivalent if and only if their associated quandles are isomorphic.


## But

is it a good invariant?

Heuristically, it seemed hard to determine whether two quandles are isomorphic.

## Gist of Theorem (A.B.-T., S. Miller)

Isomorphism of general countable quandles is as complex as possible.

## Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures, such as of graphs, groups, or indeed quandles.

## Classes of structures

## Our focus:

isomorphism relations on first order classes of countable structures, such as of graphs, groups, or indeed quandles.

Let $L$ be a countable set of relation symbols. We consider the set $\operatorname{Mod}(L)$ of $L$-structures with underlying set $\mathbb{N}$. We can view such a structure as being encoded by an element of

$$
\prod_{R \in L} 2^{\mathbb{N}^{v^{2}(R)}}
$$

where $a(R)$ is the arity of $R$.

Example:
A directed graph $G$ on vertex set $\mathbb{N}$ is determined by a function from $\mathbb{N}^{2}$ to 2 , taking $(m, n)$ to 1 if there is an edge from $m$ to $n$ in $G$, and to 0 if not.

Identifying $\mathbb{N}^{a}$ with $\mathbb{N}$ for any finite $a$, we have structures encoded by elements of the Cantor space $2^{\mathbb{N}}$.

Identifying $\mathbb{N}^{a}$ with $\mathbb{N}$ for any finite $a$, we have structures encoded by elements of the Cantor space $2^{\mathbb{N}}$.

Topology:
Recall that a subbase for the topology on $2^{\mathbb{N}}$ is given by sets with a single "bit" of information determined.

Identifying $\mathbb{N}^{a}$ with $\mathbb{N}$ for any finite a, we have structures encoded by elements of the Cantor space $2^{\mathbb{N}}$.

Topology:
Recall that a subbase for the topology on $2^{\mathbb{N}}$ is given by sets with a single "bit" of information determined.

Giving $\operatorname{Mod}(L)$ the corresponding topology, we have that an open subbase set is given by a single bit of information.

Identifying $\mathbb{N}^{a}$ with $\mathbb{N}$ for any finite $a$, we have structures encoded by elements of the Cantor space $2^{\mathbb{N}}$.

Topology:
Recall that a subbase for the topology on $2^{\mathbb{N}}$ is given by sets with a single "bit" of information determined.

Giving $\operatorname{Mod}(L)$ the corresponding topology, we have that an open subbase set is given by a single bit of information. For example, if $L_{G r}$ is the vocabulary for directed graphs (with a single binary relation),

$$
\left\{G \in \operatorname{Mod}\left(L_{G r}\right) \mid G \text { doesn't have an edge from } 3 \text { to } 177\right\}
$$

is a subbase set.

## Functions

If $L$ contains ( $k$-ary) function symbols, they can be represented as ( $k+1$-ary) relations.

For a $k+1$-ary relation $F$ to represent a function, it must satisfy

$$
\forall m_{1} \cdots \forall m_{k} \forall n_{1} \forall n_{2} \neq n_{1} \neg\left(F\left(m_{1}, \ldots, m_{k}, n_{1}\right) \wedge F\left(m_{1}, \ldots, m_{k}, n_{2}\right)\right)
$$

and

$$
\forall m_{1} \cdots \forall m_{k} \exists n\left(F\left(m_{1}, \ldots, m_{k}, n\right)\right) .
$$

## Functions

If $L$ contains ( $k$-ary) function symbols, they can be represented as ( $k+1$-ary) relations.

For a $k+1$-ary relation $F$ to represent a function, it must satisfy

$$
\forall m_{1} \cdots \forall m_{k} \forall n_{1} \forall n_{2} \neq n_{1} \neg\left(F\left(m_{1}, \ldots, m_{k}, n_{1}\right) \wedge F\left(m_{1}, \ldots, m_{k}, n_{2}\right)\right)
$$

and

$$
\forall m_{1} \cdots \forall m_{k} \exists n\left(F\left(m_{1}, \ldots, m_{k}, n\right)\right) .
$$

These sentences define a $G_{\delta}\left(\Pi_{2}\right)$ subset, so the set so defined is a Polish space with the induced topology (that is, it can be endowed with a a complete metric that gives the same topology as the induced topology).

## Functions

If $L$ contains ( $k$-ary) function symbols, they can be represented as ( $k+1$-ary) relations.

For a $k+1$-ary relation $F$ to represent a function, it must satisfy

$$
\forall m_{1} \cdots \forall m_{k} \forall n_{1} \forall n_{2} \neq n_{1} \neg\left(F\left(m_{1}, \ldots, m_{k}, n_{1}\right) \wedge F\left(m_{1}, \ldots, m_{k}, n_{2}\right)\right)
$$

and

$$
\forall m_{1} \cdots \forall m_{k} \exists n\left(F\left(m_{1}, \ldots, m_{k}, n\right)\right) .
$$

These sentences define a $G_{\delta}\left(\Pi_{2}\right)$ subset, so the set so defined is a Polish space with the induced topology (that is, it can be endowed with a a complete metric that gives the same topology as the induced topology).

## Axioms

Similarly, any class of structures for the vocabulary $L$ given by countably many first order axioms Th forms a Borel subspace $\operatorname{Mod}(T h)$ of $\operatorname{Mod}(L)$.

## Isomorphisms

An isomorphism of two structures in $\operatorname{Mod}(T h)$ is a bijection from $\mathbb{N}$ to $\mathbb{N}$ respecting the relations and functions of the structures.

## Isomorphisms

An isomorphism of two structures in $\operatorname{Mod}(T h)$ is a bijection from $\mathbb{N}$ to $\mathbb{N}$ respecting the relations and functions of the structures.

Viewed the other way:
For any bijection $g$ from $\mathbb{N}$ to $\mathbb{N}$ and any $\mathcal{M}$ in $\operatorname{Mod}(L)$, there is an $\mathcal{N}$ in $\operatorname{Mod}(L)$ such that $g$ is an isomorphism from $\mathcal{M}$ to $\mathcal{L}$ : define

$$
\mathcal{N} \vDash R\left(n_{1}, \ldots, n_{k}\right) \quad \longleftrightarrow \quad \mathcal{M} \vDash R\left(g^{-1}\left(n_{1}\right), \ldots, g^{-1}\left(n_{k}\right)\right)
$$

i.e.

$$
\mathcal{N} \vDash R\left(g\left(m_{1}\right), \ldots, g\left(m_{k}\right)\right) \quad \longleftrightarrow \quad \mathcal{M} \vDash R\left(m_{1}, \ldots, m_{k}\right)
$$

## Isomorphisms

An isomorphism of two structures in $\operatorname{Mod}(T h)$ is a bijection from $\mathbb{N}$ to $\mathbb{N}$ respecting the relations and functions of the structures.

Viewed the other way:
For any bijection $g$ from $\mathbb{N}$ to $\mathbb{N}$ and any $\mathcal{M}$ in $\operatorname{Mod}(L)$, there is an $\mathcal{N}$ in $\operatorname{Mod}(L)$ such that $g$ is an isomorphism from $\mathcal{M}$ to $\mathcal{L}$ : define

$$
\mathcal{N} \vDash R\left(n_{1}, \ldots, n_{k}\right) \quad \longleftrightarrow \quad \mathcal{M} \vDash R\left(g^{-1}\left(n_{1}\right), \ldots, g^{-1}\left(n_{k}\right)\right)
$$

i.e.

$$
\mathcal{N} \vDash R\left(g\left(m_{1}\right), \ldots, g\left(m_{k}\right)\right) \quad \longleftrightarrow \quad \mathcal{M} \vDash R\left(m_{1}, \ldots, m_{k}\right)
$$

Defining $g \cdot \mathcal{M}$ to be this $\mathcal{N}$, we have a group action of the group $S_{\infty}$ (of permutations of $\mathbb{N}$ ) on $\operatorname{Mod}(T h)$ - the logic action.

## Borel completeness

## Definition

We say a first order class $\mathcal{C}=\operatorname{Mod}\left(T h_{\mathcal{C}}\right)$ of countable $L$-structures for some $L$ is Borel complete if the isomorphism relation of every other such class Borel reduces to its isomorphism relation: for every other first order class of countable structures $\mathcal{D}=\operatorname{Mod}\left(T h_{\mathcal{D}}\right)$,

$$
\cong_{\mathcal{D}} \leq_{B} \cong_{\mathcal{C}} .
$$

## Borel completeness

## Definition

We say a first order class $\mathcal{C}=\operatorname{Mod}\left(T h_{\mathcal{C}}\right)$ of countable $L$-structures for some $L$ is Borel complete if the isomorphism relation of every other such class Borel reduces to its isomorphism relation: for every other first order class of countable structures $\mathcal{D}=\operatorname{Mod}\left(T h_{\mathcal{D}}\right)$,

$$
\cong_{\mathcal{D}} \leq_{B} \cong_{\mathcal{C}} .
$$

Examples

- Graphs
- Trees
- Linear Orders
- Groups

Theorem (A.B.-T., S. Miller)
The class of quandles is Borel complete.

## Theorem (A.B.-T., S. Miller)

The class of quandles is Borel complete.

## Proof

We construct a mapping $Q$ taking (directed, irreflexive) graphs to quandles such that

$$
\Gamma \cong \cong_{\text {Graphs }} \Gamma^{\prime} \quad \text { iff } \quad Q(\Gamma) \cong \cong_{\text {Quandles }} Q\left(\Gamma^{\prime}\right) .
$$

## Theorem (A.B.-T., S. Miller)

The class of quandles is Borel complete.

## Proof

We construct a mapping $Q$ taking (directed, irreflexive) graphs to quandles such that

$$
\Gamma \cong \cong_{\text {Graphs }} \Gamma^{\prime} \quad \text { iff } \quad Q(\Gamma) \cong \cong_{\text {Quandles }} Q\left(\Gamma^{\prime}\right) .
$$

It's a hands-on construction, so inevitably will be Borel (in fact it's continuous).

## Theorem (A.B.-T., S. Miller)

The class of quandles is Borel complete.

## Proof

We construct a mapping $Q$ taking (directed, irreflexive) graphs to quandles such that

$$
\Gamma \cong \cong_{\text {Graphs }} \Gamma^{\prime} \quad \text { iff } \quad Q(\Gamma) \cong \cong_{\text {Quandles }} Q\left(\Gamma^{\prime}\right) .
$$

It's a hands-on construction, so inevitably will be Borel (in fact it's continuous).

Since the class of graphs is known to be Borel complete, this implies that the class of quandles is Borel complete.

## How to build a quandle?

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

The next most trivial possibility
Some other bijection $\tau$.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

The next most trivial possibility
Some other bijection $\tau$. But we require $a * a=a$ for every $a$.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

The next most trivial possibility
Some other bijection $\tau$. But we require $a * a=a$ for every $a$.

We could decree that $a * a=a$,

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

The next most trivial possibility
Some other bijection $\tau$. But we require $a * a=a$ for every $a$.

We could decree that $a * a=a$, but then to preserve bijection, we should probably also decree that $a^{\prime} * a=a$ for every $a^{\prime}$ in the $\tau$ orbit of $a$.

## How to build a quandle?

Need to choose an automorphism $b \mapsto a * b$ for every element $a$.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it's not very interesting.

The next most trivial possibility
Some other bijection $\tau$. But we require $a * a=a$ for every $a$.

We could decree that $a * a=a$, but then to preserve bijection, we should probably also decree that $a^{\prime} * a=a$ for every $a^{\prime}$ in the $\tau$ orbit of $a$. Or even in some collection of orbits.

## Dynamical quandles

Introduced by Kamada (2010).

Let $X$ be a set and $\tau$ a bijection $X \rightarrow X$.

## Dynamical quandles

Introduced by Kamada (2010).

Let $X$ be a set and $\tau$ a bijection $X \rightarrow X$.

Let $\Omega$ denote the set of $\tau$-orbits $[x]_{\tau}$ of $X$,

## Dynamical quandles

Introduced by Kamada (2010).

Let $X$ be a set and $\tau$ a bijection $X \rightarrow X$.

Let $\Omega$ denote the set of $\tau$-orbits $[x]_{\tau}$ of $X$, and let $\theta: \Omega \rightarrow \mathcal{P}(\Omega)$ be a function such that for all $x$ in $X,[x]_{\tau} \in \theta\left([x]_{\tau}\right)$.

## Dynamical quandles

Introduced by Kamada (2010).

Let $X$ be a set and $\tau$ a bijection $X \rightarrow X$.

Let $\Omega$ denote the set of $\tau$-orbits $[x]_{\tau}$ of $X$, and let $\theta: \Omega \rightarrow \mathcal{P}(\Omega)$ be a function such that for all $x$ in $X,[x]_{\tau} \in \theta\left([x]_{\tau}\right)$.

Then the operation $*$ on $X$ given by

$$
x * y= \begin{cases}y & \text { if }[x]_{\tau} \in \theta\left([y]_{\tau}\right) \\ \tau y & \text { if }[x]_{\tau} \notin \theta\left([y]_{\tau}\right)\end{cases}
$$

makes $(X, *)$ a quandle, the dynamical quandle derived from $(X, \tau)$ with respect to $\theta$.

Given a graph $\Gamma$ we encode $\Gamma$ into the $\theta$ of a dynamical quandle.

Given a graph $\Gamma$ we encode $\Gamma$ into the $\theta$ of a dynamical quandle.

Let $\Gamma=(V, E)$ be an irreflexive directed graph. We take

- $X=V \times 2$
- $\tau$ flipping the second coordinate: $\tau(v, 0)=(v, 1), \tau(v, 1)=(v, 0)$. Identify $[(v, i)]_{\tau}$ with $v$, so $\Omega$ is essentially $V$.

Given a graph $\Gamma$ we encode $\Gamma$ into the $\theta$ of a dynamical quandle.

Let $\Gamma=(V, E)$ be an irreflexive directed graph. We take

- $X=V \times 2$
- $\tau$ flipping the second coordinate: $\tau(v, 0)=(v, 1), \tau(v, 1)=(v, 0)$. Identify $[(v, i)]_{\tau}$ with $v$, so $\Omega$ is essentially $V$.
- $\theta: V \rightarrow \mathcal{P}(V)$ is defined by

$$
u \in \theta(v) \quad \longleftrightarrow \quad u E v \vee u=v
$$

Given a graph $\Gamma$ we encode $\Gamma$ into the $\theta$ of a dynamical quandle.

Let $\Gamma=(V, E)$ be an irreflexive directed graph. We take

- $X=V \times 2$
- $\tau$ flipping the second coordinate: $\tau(v, 0)=(v, 1), \tau(v, 1)=(v, 0)$. Identify $[(v, i)]_{\tau}$ with $v$, so $\Omega$ is essentially $V$.
- $\theta: V \rightarrow \mathcal{P}(V)$ is defined by

$$
u \in \theta(v) \quad \longleftrightarrow \quad u E v \vee u=v
$$

Then we define $Q(\Gamma)$ to be the dynamical quandle derived from $(X, \tau)$ with respect to $\theta$.

## Quandle definition

A quandle is a set with a binary operation $*$ such that
(1) $\forall a \forall b \forall c[a *(b * c)=(a * b) *(a * c)]$
(2) for all $a$ and $c$ there is a unique $b$ such that $a * b=c$
(3) $\forall a[a * a=a]$

Equivalently, for every $a$ the operation of left multiplication by $a(b \mapsto a * b)$ is an automorphism with fixed point a.

## Kei definition

A kei is a set with a binary operation $*$ such that
(1) $\forall a \forall b \forall c[a *(b * c)=(a * b) *(a * c)]$
(2) for all $a$ and $c$ there is a unique $b$ such that $a * b=c$
(3) $\forall a[a * a=a]$
(9) $\forall a \forall b[a *(a * b)=b]$

Equivalently, for every $a$ the operation of left multiplication by $a(b \mapsto a * b)$ is an involution with fixed point $a$.

Clearly if $\Gamma \cong \Gamma^{\prime}$ then $Q(\Gamma) \cong Q\left(\Gamma^{\prime}\right)$.

Interesting part: if there is an isomorphism $f: Q(\Gamma) \rightarrow Q\left(\Gamma^{\prime}\right)$, why must there be an isomorphism $\Gamma \rightarrow \Gamma^{\prime}$ ?

Clearly if $\Gamma \cong \Gamma^{\prime}$ then $Q(\Gamma) \cong Q\left(\Gamma^{\prime}\right)$.

Interesting part: if there is an isomorphism $f: Q(\Gamma) \rightarrow Q\left(\Gamma^{\prime}\right)$, why must there be an isomorphism $\Gamma \rightarrow \Gamma^{\prime}$ ?

Our isomorphism $f$ need not arise from a graph isomorphism.

Clearly if $\Gamma \cong \Gamma^{\prime}$ then $Q(\Gamma) \cong Q\left(\Gamma^{\prime}\right)$.

Interesting part: if there is an isomorphism $f: Q(\Gamma) \rightarrow Q\left(\Gamma^{\prime}\right)$, why must there be an isomorphism $\Gamma \rightarrow \Gamma^{\prime}$ ?

Our isomorphism $f$ need not arise from a graph isomorphism. Nevertheless, given $f$ can we construct an isomorphism $\varphi: \Gamma \rightarrow \Gamma$ ?

## What can $f$ do?

Consider any $(v, j) \in Q(\Gamma)$.

## What can $f$ do?

Consider any $(v, j) \in Q(\Gamma)$.
Case 1
There is some $(u, i) \in Q(\Gamma)$ such that $(u, i) *(v, j) \neq(v, j)$.

## What can $f$ do?

Consider any $(v, j) \in Q(\Gamma)$.
Case 1
There is some $(u, i) \in Q(\Gamma)$ such that $(u, i) *(v, j) \neq(v, j)$.

Then the "twinning" of $(v, j)$ with $(v, 1-j)$ is witnessed by the action of $(u, i)$.

## What can $f$ do?

Consider any $(v, j) \in Q(\Gamma)$.

## Case 1

There is some $(u, i) \in Q(\Gamma)$ such that $(u, i) *(v, j) \neq(v, j)$.

Then the "twinning" of $(v, j)$ with $(v, 1-j)$ is witnessed by the action of $(u, i)$. So the action of $f(u, i)$ on $f(v, j)$ is nontrivial, and takes $f(v, j)$ it to its twin. So the first component of $f(v, j)$ is independent of $j \in\{0,1\}$, and we take this to be $\varphi(v)$.

## What can $f$ do?

## Case 2

Every element of $Q(\Gamma)$ acts trivially on $(v, j)$.

## What can $f$ do?

## Case 2

Every element of $Q(\Gamma)$ acts trivially on $(v, j)$.

Then $f$ need not respect the "twinning" structure.

## What can $f$ do?

## Case 2

Every element of $Q(\Gamma)$ acts trivially on $(v, j)$.

Then $f$ need not respect the "twinning" structure. But we can show that $f$ only mixes around $(v, j)$ and $(v, 1-j)$ within a set of elements corresponding to a clique of vertices all with the same other edges in and out, so we can choose an arbitrary bijection for $\varphi$ on that clique.

## What can $f$ do?

## Case 2

Every element of $Q(\Gamma)$ acts trivially on $(v, j)$.

Then $f$ need not respect the "twinning" structure. But we can show that $f$ only mixes around $(v, j)$ and $(v, 1-j)$ within a set of elements corresponding to a clique of vertices all with the same other edges in and out, so we can choose an arbitrary bijection for $\varphi$ on that clique.

These definitions of $\varphi(v)$ combine to produce a graph isomorphism from $\Gamma$ to $\Gamma^{\prime}$.

## Open question

Is there an encoding map $Q:$ Graphs $\rightarrow$ Quandles that is functorial?

## Open question

Is there an encoding map $Q:$ Graphs $\rightarrow$ Quandles that is functorial?

Our map $Q$ fails this badly, because graph homomorphisms need not preserve non-edges.

